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v OREWORD

Comme e

The Seventh Army Conference on Applied Mathematics and Computing was held at
the U.S. Military Academy, West Point, New York, on 6-9 June 1989, This is the
second time the Military Academy has served as the host for this series .of Army
conferences. For each of these meetings we were fortunate to have the Heads of
the Department of Mathematics as Chairpersons on Local Arrqngéﬁénts. This year
Colonel Frank Giordano served in this capacity. He was-aSsisted in this task
by Lieutenant Colonel David Arney and Captain Suzanne Swann., These individuals
quﬁgg_gg,commended—ﬁer—thefr‘éffﬁ?ts in coordinating all the details required
‘to conduct this large successful scientific meeting.

l/' Moy
This 41989 Conference was attended by more than 80 scientists and engineers
representing academia and various Army agencies. The meeting featured seven
invited speakers. These general talks covered several topics of current
interest, including multi-scale methods and wavelet transforms, high
performance computing, phase transformations, multivariate splines, and
stochastic control.\_The names of these speakers, together with the titles of
their addresses, are listed below.~>The second part of the program consisted of
special sessions on topics such as stochastic methods for image analysis,
mathematical issues in computer science, computational methods for multibody
dynamics, and mechanics of large deformations.~ In additicn, about 40
contributed papers were presented by both Army and academic participants.,

D S gV
SPEAKER AND AFFILIATION TITLE QF ADDRESS v
Professor Alan S. Willsky Estimation of Spatial]y—Distributéd
Massachusetts Institute Processes ;
of Technology i
Professor Richard D. James Microstructure of Crystals Undergoing
University of Minnasota Phase Transformation .
Professor Robert V. Yohn Modelling Microstructure by Energy
New York University Minimization
Professor S. Lennar® Johnsson High Performance Computing
Yale University
Professor Mark H.A, Davis Theory and Application of PiecewWise-
Imperial College of Science Deterministic Processes
Professor A, Cohen Wavelet Transforms
Unfversite of Paris-
Dauphine
Professor Carl de Boor What's New in Multivariate Splines?

University of Wisconsin-
Madison

114



One of the sessions at this conference was called "Mathematics at West Point,"
In it, members of the Department of Mathematics outlined a new program for the
cadets entitled "USMA's Mathematics Program in 1990 and Beyond." The first
article in these proceedings is devoted to this curriculum. /

This conference is part of a continuing program of Army-wide symposia held
under the auspices of the Army Mathematics Steering Committee (AMSC) to promote
better communication between Army scientists and the Army Research Office
investigators. In order that this mission be accomplished, a large number of
scientists had to expend a great deal of effort. The members of the AMSC would
like to thank all these individuals for their excellent presentations and their
valuable contributions to the field of science.
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AGENDA

Tuesday, June 6, 1989

0800 - 1600 Registration* - Bartlett Hall, Room 220
0800 - 0830 Opening Remarks - Bartlett Hall, Room 220
Frank Giordano, U.S. Military Academy, West Point, NY
0830 - 0930 General Sessfon I - Bartlett Hall, Room 220
Chairperson: Frank A. Giordano, U.S. Military Academy, West
Point, New York
Estimation for Spatially-Distributed Processes
Alan S. Willsky, Massachusetts Institute of Technology,
Cambridge, Massachusetts
0930 - 1000 Break
1000 - 1200 Special Session A - Stochastic Methods for Image Analysis -

Bartlett Hall, Room 220

Chairperson: Gerald Andersen, U.S. Army Research Office,
Research Triangle Park, North Carolina

Robust Image Models for Image Restoration and Texture Edge
Detection
R. L. Kashyap, Purdue University, West Lafayette, Indiana
and Kie-Bum Eom, Syracuse University, Syracuse, New York

Computational Problems Motivated by Laser Radar Target

Recognition
J. Michael Steele, Princeton University, Princeton, NJ
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* On Monday, 5 June 1989, conference attendees can register at the Hotel Thayer
during the time period 1900-2200.




1000 - 1200

1200 - 1300
1300 - 1530

Tuesday (Continued)

Technical Sessfon 1 - Solid Mechanics I - Bartlett Hall,
Room 420

Chairperson: John D. Vasilakis, Benet Weapons Laboratory,
Waterviiet, New York

On the Stroh Formalism for Anisotropic Elasticity and Its
Applications to Composites
T.C.T. Ting, University of I11inois at Chicago, Chicago, IL

Phase Transitions and Maximally Dissipative Dynamic Solutions
in the Riemann Problem for Impact
Thomas J. Pence, Michigan State University, East Lansing, MI

Ellipiticity and Deformations with Discontinuous Gradients in
Elastostatics
Phoebus Rosaxis, Cornell University, Ithaca, New York

Optimization of Elastic Materials
William W, Hager and Rouben Rostamian, University of
Florida, Gainesville, Florida

Note on Modeling Stress Relaxation of Elastomer Cylinders
Arthur Johnson, U.S. Army Materials Technology Laboratory,
Watertown, Massachusetts

Transient Shear Response of a Rigid Block-Support System
Subjected to Lateral Impact
Aaron Das Gupta, U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland

Lunch

Special Session B - Large Deformation and Computational Issues
Bartlett Hall, Room 220

Chairpersons: Arthur Johnson, U.S. Army Materials Technology
Laboratory, Watertown, Massachusetts and John
Walter, U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland

On the Continuum Mechanics of the Motion of a Phase Interface
Morton E. Gurtin, Carnegie-Mellon University, Pittsburgh, PA

Nonlinear Phenomena in the Inverse Problem
Toshio Mura, Northwestern University, Evanston, Il1iinois

Dynamics of Viscoelastic Materials with Non-monotone
Constitutive Relations
D. S. Malkus, J. A. Nohel and B. J. Plohr, University of
Wisconsin-Madison, Madison, Wisconsin
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1300 - 1530

Tuesday (Continued)

Smart Algorithms for Complex Problems in Fluid Dynamics
J. Tinsley Oden, University of Texas at Austin, Austin, TX

Effect of Constitutive Modelling on the Dynamic Development of
Shear Bands in Viscoplastic Materials
Romesh C, Batra and C. H., Kim, University of Missouri-Roila,
Rolla, Missouri

ok ook

Technical Session 2 - Control, Systems and Robotics - Bartlett
Hall, Room 420

Chairperson: Rickey Kolb, U.S. Military Academy, West Point,
New York

Kinodynamic Planning in Robotics
Bruce R. Donald, Cornell University, Ithaca, New York

Restructurable Control Imputs I: The Linear Case
Charles E. Hall, Jr., U.S. Army Missile Command, Redstone
Arsenal, Alabama

Identifying the Unknown Shift of the Sum of Two Shifted
Versions of a Linear Feedback Shift Register Sequence
Harold Fredricksen, Naval Postgraduate School, Monterey, CA
and Gary W. Krahn, U.S, Military Academy, West Point, NY

Digital Redesign of Pseudo-Continuous-Time Suboptimal
Regulators for Large-Scale Discrete Systems
L. S. Shieh, University of Houston, Hcuston, Texas and
Norman Coleman, U.S. Army Armament R&D Center, Picatinny
Arsenal, New Jersey

New Methodologies in Renewal Theory
B. D. Sivazlian, University of Florida. Gainesville, Florida

Stepwise Closed Form Techniques for Computer Simulation of
Guided Projectiles
M. J. Amoruso and R, Campbell, U.S. Armament R&D Center,
Picatinny Arsenal, NJ, and Herbert Cohen, U.S. Army Materiel
Systems Analysis Activity, Aberdeen Proving Ground, Maryland

Variations in Buchberger's Algorithm
Lee Taylor, Cornell University, Ithaca, New York
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1530 -

1600 -

1600

1700

1600
0930

1000

1200

Tuesday (Continued)

Break

General Session Il - Bartlett Hall, Room 220

Chairperson: Dennis Tracey, U.S. Army Materials Technology
Laboratory, Watertown, Massachusetts

Microstructure and Properties of Crystals Undergoing Phase
Transformation
Richard D. James, University of Minnesota, Minneapolis, MN

Wednesday, June 7, 1989

Registration
General Session III - Bartlett Hall, Room 220

Chairperson: Julian J. Wu, U.S. Army Research Office, Research
Triangle Park, North Carolina

Modelling Microstructure by Energy Minimization
Robert V. Kohn, New York University, New York, NY
Break
Special Session Cl1 - Mathematics in Computer Science -
Bartlett Hall, Room 220
Chairperson: Anil Nerode, Cornell University, Ithaca, New York

Nontraditional Logic in Computer Science
Anil Nerode, Cornell University, Ithaca, New York

[ZF and Kripke Models and Program Extraction
James Lipton, Cornell University, Ithaca, New York

Concurrent Specifications and Their Gurevich-Harrington
Strategies

A. Yakhnis, Cornell University, [thaca, New York
Extraction of Concurrent Programs from Gurevich-Harrington

Strategies
V. Yakhnis, Cornell University, [thaca, New York
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1000 - 1200

1200 - 1330

1330 - 1430

r

Wednesday (Continued)

Technical Session 3 - Computational Fluid Mechanics - Bartlett
Hall, Room 420

Chairperson: David C. Arney, U.S. Military Academy, West
Point, New York

Block Multigrid Implicit Solution of the Euler Equations of
Compressible Fluid Flow
David A, Caughey and Yoram Yadlin, Cornell University,
[thaca, New York

Effect of Particle Velocity Fluctuations on the Inertia
Coupling in Two-Phase Flow
Donald A. Drew, Rensselaer Polytechnic Institute, Troy, NY

Elastic Deformation and Slug Flow as Applications of Front
Tracking
James Glimm, State University of New York at Stony Brook,
Stony Brook, New York, X. Garaizar and W. Guo, Courant
Institute, New York University, New York, NY

Unstable Interfaces and Anomalous Waves in Compressible Fluids
John W, Grove, State University of New York at Stony Brook,
Stony Brook, New York

Characteristics and Stability Implications of a Streamwise

Vortex in Bounded Shear Flow
Joseph D. Myers, U.S. Military Academy, West Point, New York
and Frederick H. Abernathy, Harvard University, Cambridge,
Massachusetts

Weakly Nonlinear Expansions for Viscous Rotating Pipe Flow

Alex Mahalov and Sidney Leibovich, Cornell University,
Ithaca, New York

Lunch

Special Session C2 - Mathematics in Computer Science - Bartlett
Hall, Room 220
Chairperson: Anil Nerode, Cornell University, Ithaca, New York

Intuitionistic Modal Logics
D. Wijesekera, Cornell University, Ithaca, New York

Generalized Rewriting in Type Theory
David A. Basin, Cornell University, [thaca, New York
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Wednesday (Continued)

1330 - 1430 Technical Session 4 - Adaptive Methods and Other Analytical
Techniques - Bartlett Hall, Room 420

Chairperson: Louis J. Piscitelle, U.S. Army Natick
Laboratories, Natick, Massachusetts

Numerical Experiments in Adaptive Mesh Methods
David C. Arney, U.S. Military Academy, West Point, New York,
Rupak Biswas and Joseph E. Flaherty, Rensselaer Polytechnic
Institute, Troy, New York

Asymptotic Analysis of the np-Junction
Donald A. Drew, Rensselaer Polytechnic Institute, Troy, NY

Entropy, Directed Orthogonality, and Magic Distances
Lee K. Jones and Victor Trutzer, University of Lowell,
Lowell, Massachusetts

1430 - 1445 Break

1445 - 1530 U.S. Military Academy Session - Bartlett Hall, Room 220
Mathematics at West Point

1530 - 1600 Break

1600 - 1700 General Session IV - Bartlett Hall, Room 220

Chairperson: Paul Broome, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, MD

High Performance Computing
S. Lennart Johnsson, Yale University, New Haven, Connecticut

A banquet is being planned for Wednesday evening at the West Point Officers'
Club.
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0800 - 1600
0830 - 0930
0930 - 1000
1000 - 1200
1000 - 1200

Thursday, June 8, 1989

Registration - Bartlett Hall, Room 220
General Session V - Bartlett Hall, Room 220

Chairperson: Norman Coleman, U.S. Army Armament R&D Center,
Picatinny Arscnal, New Jersey

Theory and Application of Piecewise-Deterministic Processes
Mark H.A. Davis, Imperial College of Science and Technology,
London, England

Break

Special Session D1 - Computational Methods for Multibody
Dynamics - Bartlett Hall, Room 220

Chairperson: Roger Wehage, U.S. Army Tank-Automotive Command,
Warren, Michigan

Implementation of Efficient Simulation Codes for

Tree-Structured Mechanical Systems, such as Robots
Martin Otter, German Aerospace Research Establishment
(DFVLR), West-Germany

Symbolic Factors of Linear System Coefficient Matrices for
Tree-Structured Systems and Their Efficient Solution
Roger A. Wehage, U.S. Army Tank-Automotive Command, Warren,
Michigan

Optimal Cut-Set Selection for Tree-Structured Systems
Containing Closed Loops
James L. Overholt and Roger A. Wehage, U.S. Army
Tank-Automotive Command, Warren, Michigan

% Je e e do ke

Technical Session 5 - Computer Science - Bartlett Hall,
Room 420

Chairperson: Terry Cronin, U.S. Army Signal Warfare
Laboratory, Warrenton, Virginia

A Penalty Function Method for the Standard Equality Constrained
Minimization Problem
Thomas F. Coleman and Christian G. Hempel, Cornell
University, Ithaca, New York
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1200 - 1330

1330 - 1530

Thursday (Continued)

Iterative Methods for Cyclically Reduced Non-Self-Adjoint
Linear Systems
Howard Elman, University of Maryland, College Park, MD and
Gene H. Golub, Stanford University, Stanford, California

A Computer Simulation of the Fr-~ly-Associating Neocortex
Mark Johnson, Raymond Scanl and Michael Cipollo, Benet
Weapons Laboratory, Watervliiet Arsenal, Watervliet, New York

On Calculations of the Topological Complexity of Algorithms
Anatoly S. Libgober, University of I11inois at Chicago,
Chicago, I1linois

Deconvolution of Overdetermined Systems of Convolution
Equations
B. A. Taylor, University of Michigan, Ann Arbor, Michigan
and Carlos A. Berenstein, University of Maryland, College
Park, Maryland

Lunch

Special Session D2 - Computational Methods for Multibody
Dynamics - Bartlett Hall, Room 220

Chairperson: Gary Anderson, U.S. Army Research Office,
Research Triangle Park, North Carolina

Application of Recursive Projection Methods to Dynamics of
Deformable Multibody Systems
Roger A. Wehage, U.S. Army Tank-Automotive Command, Warren,
Michigan and A. A, Shabana, University of Il1linois at
Chicago, Chicago, I1linois

Automated Symbolic Formulation of Efficient Vehicle Simulation
Codes
Michael Sayers, University of Michigan, Ann Arbor, Michigan

A Comparative Study of Different Dynamical Formulations in
Multibody Dynamics
S. Hanagud, Georgia Institute of Technology, Atlanta, GA

A Generalized Harmonic Balance Method for Forced Nonlinear
Oscillations
B. Noble, Brunell University, Uxbridge, United Kingdom,
M. A. Hussain, General Electric Corporate R&D Center,
Schenectady, New York, and Julian J. Wu, U.S. Army Research
Office, Research Triangle Park, North Carolina
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1330 - 1530

1530 - 1600

1600 - 1700

Thursday (Continued)

Technical Session 6 - Solid Mechanics Il - Bartlett Hall,
Room 420

Chairperson: John Walter, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland

Effect of Thermal Softening on the Response of Shearing Motions
Athanasios E. Tzavaras, University of Wisconsin-Madison,
Madison, Wisconsin

Particle Interactions in Ductile Metals
Dennis M. Tracey and Paul J. Perrone, U.S. Army Materials
Technology Laboratory, Watertown, Massachusetts

A Mode I Crack Solution for a Mooney-Rivlin Material
C. J. Quigley, U.S. Army Materials Technology Laboratory,
Watertown, Massachusetts and D. M, Parks, Massachusetts
Institute of Technology, Cambridge, Massachusetts

Elastic-Plastic Analysis of a Thick-Walled Composite Tube
Subjected to Internal Pressure
Peter C.T. Chen, Benet Weapons Laboratory, Watervliet
Arsenal, Watervliiet, New York

Distortion of Frequency Spectra of Solids Due to Discretization
Joseph M, Santiago, U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland

Ultrafast Thermodynamic Processes
Richard A, Weiss, U.S. Army Engineer Waterways Experiment
Station, Vicksburg, Mississippi

The Internal Phase Structure of Atoms

Richard A. Weiss, U.S. Army Engineer Waterways Experiment
Station, Vicksburg, Mississippi

Break

General Sessfon VI - Bartlett Hall, Room 220

Chairperson: Siegfried Lehnigk, U.S. Army Missile Command,
Redstone Arsenal, Alabama

Wavelet Transforms .
Jean-Michel Morel* Universite of Paris-Dauphine, Paris,
France

*Replaced by A. Cohen

------
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Friday, June 9, 1989

0800 - 1100 Registration - Bartlett Hall, Room 220

0830 - 1030 Technical Session 7 - Approximation Theory and Applications -
Bartlett Hall, Room 220

Chairperson: Royce Soanes, Benet Weapons Laboratory,
Watervliet, New York

Numerical Solution of One-Dimensional Aperture Integral
Equation
M. A. Hussain and Wen-Tai Lin, General Electric Corporate
R&D Center, Schenectady, New York and Ben Noble, Brunell
University, Uxbridge, United Kingdom

Computation of Leading Eigenspaces for Generalized Eigenvalue
Problems
Abraham Kribus, Cornell University, Ithaca, New York

Applications of Fibonacci Sequences and Tiling
Joseph Arkin, David C. Arney, Lee S. Dewald and Charles
Kennedy, U.S. Military Academy, West Point, New York

Approximation and Interpolation Formulas for Real-Time
Applications
C. K. Chui, Texas A& University, College Station, Texas

An Enhanced Knot Selection Algorithm for Least Squares
Approximation Using Thin Plate Splines
John R, McMahon, U.S. Military Academy, West Point, New York
and Richard Franke, Naval Postgraduate School, Monterey, CA

Selection of Step Sizes in Numerical Modeling and Simulation
Rao Yalamanchili, U.S. Army Armament R&D Center, Picatinny
Arsenal, New Jersey

*hkkid

0830 - 1030 Technical Session 8 - Mathematical Physics, Statistics, Etc. -
Bartlett Hall, Room 420

Chairperson: John Robertson, U,S. Military Academy, West
Point, New York

An Extension of the Cramer-vonMises Goodness of Fit Statistic
for Multivariate Gaussianity
Kevin M. Beam, U,S. Military Academy, West Point, New York
and Albert S. Paulson, Rensselaer Polytechnic Institute,
Troy, New York

The Number of Solutions of Certain Equations Occurring in
Statistics
Siegfried H., Lehnigk, U.S. Army Missile Command, Redstone
Arsenal, Alabama
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1030 - 1100

1100 - 1200

1200 - 1215

Friday (Continued)

Numerical Modelling of Large Fires
K. C. Heaton, Defense Research Establishment Valcertier,
Courcelette, Quebec

Application of Composite Regression Analysis to Satellite Data
Processing
Roger H. Multer, U.S. Army Engineer Waterways Experiment
Station, Vicksburg, Mississippi
Optimized Annulus-based Point-in-Region Inclusion Testing for
d Dimensions

Terry M. Cronin, U,S. Army Signal Warfare Laboratory, Vint
Hill Farms Station, Warrenton, Virginia

Break

General Session VII - Bartlett Hall, Room 220

Chairperson: Jagdish Chandra, U.S. Army Research Office,
Research Triangle Park, North Carolina

What's New in Multivariate Splines?
Carl de Boor, University of Wisconsin-Madison, Madison, WI

Adjournment
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USMA’S MATHEMATICS PROGRAM FOR 1990 and BEYOND

David C. Arney
Lee S. Dewald, Sr.
John R. Edwards

Department of Mathematics
United States Military Academy
West Point, New York 10996-1786

ABSTRACT: The following paper stemmed from a special
presentation by the authors at the Seventh Annual Army
Conference on Applied Mathematics and Computing. The
presentation described the background of, motivation for,
and broad content of the new core mathematics program for
all cadets starting in the Fall of 1990 -- discrete
dynamical systems, calculus, and probability and statistics.
The United States Military Academy (USMA) is the single
largest source of officers to the Army with mathematics,
science, and engineering backgrounds. It is necessary to
inform Army mathematicians and scientists of these
curricular developments and the department’s research
program.

1. Intxoduction.

Mathematics is the language of science. Continuous
mathematics, especially calculus, has been the cornerstone
of undergraduate education in the sciences. First models of
a behavior are often continuous. We need to continue to
teach continuous mathematics since we all, students
especially, gain great insights from the closed-form
solutions to continuous models that calculus affords, even
when these models oversimplify reality. These first models
assume the world is linear, continuous, and deterministic.
More often, it is nonlinear, ultimately discrete, and
usually stochastic. Discrete mathematics is not only the
language of the discrete world but also is the language of
the computer. Probabilistic mathematics is the language of
uncertainty. The study of all these fundamental areas of
mathematics would provide a much better basis to view and
model our world.

The order of presentation, discrete dynamical systems,
calculus and probability and statistics, is important.
Discrete mathematics progressing from algebra to matrix
algebra to discrete dynamical systems is a better transition
from high school mathematics and can be used to preview the
more difficult concepts (for example, the limit) that
underly continuous mathematics. Finally, probability is
based on both continuous and discrete mathematics. With




recent advances in textbooks and software, we at USMA are in
an unprecendented position with each cadet possessing a
computer (portable in 1990) to present an integrated four-
course curriculum treating the fundamental ideas of
discrete, continuous and stochastic mathematics.

We feel that an integrated curriculum will permit us to
develop the following attitudes in cadets that will carry
over into their careers as officers:

- Mathematics is deductive in character. A few
principles must be internalized but most notions are
derived.

- Mathematics is a medium of communications in which
ideas are formalized and through which theories are
synthesized.

- Curiosity and experimental disposition are essential
characteristics of mathematics education. Through
observation one seeks universal truths and establishes
them by proof.

- Learning mathematics is an individual responsibility.
Textbooks, instructors, and members of study groups
only facilitate the process.

- Mathematics is useful.

In the next three sections we describe in more detail
the plans for each of the three courses in the four
semesters of mathematics - discrete dynamical systems, the
calculus, and probability and statistics. In designing our
curriculum, we have taken into account several national
reports on the current status of mathematics, calculus in
particular, and the changes needed to improve the status of
our educational program [1,2].

In the final section we briefly describe the research
program to which the Department of Mathematics ascribes for
tenured and non-tenured faculty as well as the cadets. We
see this program as the ultimate capstone of the new
program. Problem solving is aggressively encouraged by
providing ample opportunities to solve meaningful practical
problems requiring the integration of fundamental ideas
encompassing one or more lesson blocks from one or more core
mathematics courses.




2. Discrete Dynamical Systems.

Under USMA'’'s proposed curriculum, the first core
mathematics course is MA 103: Discrete Dynamical Systems
with Matrix Algebra. This is a 3 credit hour course. It
provides introductions to elementary matrix operations and
matrix methods to solve systems of linear equations.
Several applications of these subjects are also studied.
Most of the course is devoted to topics and problems in the
mathematics of discrete dynamical systems. Introductory
material on modeling problems using difference equations
motivates the study of solution techniques for these
equations and the eventual study of calculus and
differential equations. Concepts and techniques are
discussed for first-order linear and nonlinear equations and
higher order linear equations, and systems of equations.
Computer software is used to demonstrate and solve problems
in both the matrix algebra and the discrete dynamical
systems sections of the course.

While the placement and scope of our course in the
curriculum may be unique, we feel that this will be the
ultimate role of a discrete mathematics course. As stated
by Maurer in [3], "there may yet be a move toward more
discrete math in the first year." We intend to lead the way
in designing, testing, and teaching a discrete course for
the first semester of college mathematics. 1In order to
start this course in the 1990-1991 academic year, we will
have to piece together textual material and write some
ourselves. [4,5]

There are several reasons to begin our curriculum with
such a course. It provides a logical transition from high
school to college mathematics and provides an intuitive
motivation for the limiting concepts of the calculus.
Discrete mathematics also is the language of the computer,
and difference equations provide an intuitive introduction
to recursion. Discrete models, many in the form of
difference equations, are popular models of dynamic behavior
and are worthy of increased study.

Some of the goals for the students in the course are:
ability to formulate discrete mathematical models; ability
to solve algebraic and discrete models; motivation for the
calculus; and internalization of a few principles of
mathematics. We hope to use this course to develop the
following attitudes early in the curriculum: curiosity and
experimental disposition; a desire to structure and
communicate quantitative ideas; an appreciation for
mathematics as a useful tool to solve real problems; and an
appreciation for the power of deductive reasoning.




The first block of 12-15 lessons covers matrix algebra.
The major topics in this block are the basic concept of
linearity, matrix operations, determinants, inverses, Markov
processes, and linear programming. The second block on
difference equations covers first order theory and
applications, second order theory and applications, first
order systems, Markov chains, and nonlinear difference
equations. The final block establishes a foundation for
calculus by introducing sequences and difference quotients.

One unifying feature of all the blocks in this course is
the use of the computer. The computer will be used to
demonstrate concepts in class as well as a tool to solve
problems. USMA and the Department of Mathematics, in
particular, have had an aggressive program of computer
assisted instruction for several years [6]. This course
intends to establish the foundation for computer use by
cadets in solving problems of a mathematical or scientific
nature and to establish the computer as a tool in
mathematical experimentation.

3. Lean and Lively Calculus.
3.1. Background.

From the 1950‘s through 1974 the core mathematics
program at USMA was a strong and stable program in
undergraduate mathematics both in content and credit. 1In
four semesters each cadet received the equivalent of six
courses in mathematics -- single-variable (integral and
differential) calculus, multivariable calculus, linear
algebra, ordinary differential equations, and elementary
probability and statistics. Cadets attended class six days
a week for 17 weeks a semester at 80 minutes per day. All
of the textual materials were written at USMA either
directly or under the supervision of the Chairman of the
Department of Mathematics, Charles P. Nicholas.

Since the mid-70’'s there has been a constant and
steady erosion of the depth and breadth of coverage in the
core mathematics at USMA. Part of this was the result of
offering academic majors in non-science and non-engineering
fields. Regardless of the rationale for the reduced
emphasis on mathematics, the effects were the same. By the
end of the 1980’s the core mathematics program was reduced
by 30%. Unlike many other schools, USMA still has
maintained an emphasis on mathematics by keeping four
mathematics courses in its core curriculum. [7]

The resulting programs never reached a steady-
state. Topics would appear, disappear, and reappear from
semester to semester. Conceptual development was replaced
entirely by the learning of algorithmic skills. There was
no real plan.




In 1984 the Chairman of the Department of
Mathematics received a report from the tenured faculty which
recognized a need to change the core mathematics program at
USMA and to take advantage of the technological advances in
computers and symbolic manipulatiion. Howver, textbooks
were not available (essentially are still not) and there was
no authority or time to write these textual materials at
USMA. Therefore, little was changed.

However, since the beginning of the National
Reform Movement in Calculus in 1987 there has been
increasing interest in mathematics education in many sectors
[1], [2] -- publishers, authors, professors, computer
scientists, and students. It is against this backdrop that
the West Point version of the "Lean and Lively" Calculus is
being developed.

3.2. (Course Description - Calculus I and IT.

These are the second and third courses of the
mathematics core curriculum and are each 4.5 credit hours.
These standard courses provide study of mathematics as an
intellectual discipline and as a foundation for continued
study of mathematics and for the subsequent study of
physical sciences, social sciences, and engineering.
Beginning with functions and the sequential development of
the limit, the calculus is covered through the development
and evaluation of multiple integrals. No vector calculus is
included. Ordinary differential equations are integrated
into the course as soon as higher order derivatives are
covered. Computers and symbolic manipulation are integrated
throughout the program to foster both discovery and
intellectual curiosity and to enhance problem-solving.

3.3. Qbjectives of the Calculus Sequence.

There are four basic objectives to the study of
calculus which support the overall objectives of the
mathematics curriculum at USMA:

a. Students learn the three basic limit ideas of
calculus: The limit of a convergent sequence is related to
the concept of a continuous function; the limit of a
quotient is related to a derivative; the limit of a sum is
related to the definite integral.

b. Students be able to prove some of the basic
results in the calculus.

c. Students be able to formulate ideas in the
mathematics of the calculus.




d. Students be able to solve problems using
calculus by formulating the models and applying the
appropriate techniques and algorithms.

3.4. " "

Two problems contribute to a need for a new "lean"
calculus. Both problems lie in the size of the calculus
text. Calculus books are too large! Even though there are
only three principle ideas there are typically 16-19
chapters of material. What once were applications or
examples have been elevated to the status of independent
topics. Thus problem one is the growth of "important*
topics.

The second problem is the reluctance to remove
outdated or irrelevant material from the textbooks. Many
topics which are purely algorithmic by nature and easily
implemented with a computer, are still being drilled and
memorized in calculus classrooms.

There are two approaches to be taken in deriving
this new lean calculus -- the butcher’s approach or that of
the sculptor.

The butcher’s approach is relatively easy to
implement and requires no new textbooks. Essentially the
topics of the textbook are divided between baseline and
enhancement. Every student of calculus does the baseline
and some percentage of the enhancement depending on
background, instructor preference, etc. This idea has
essentially been implemented by Scott Foresman Publishers
for the Calculus and Analytic Geometry by Al Shenk. On the
surface this approach sounds like little improvement. Some
agreement across colleges over what is baseline and what is
enhancement would be required.

There are however Computer Algebra Systems (CAS)
that can support a butcher’s approach independent of the
choice of textbooks. CAS is the new technology that would
make this approach a major improvement over the existing
programs. CAS performs symbolic manipulation to include
symbolic integration and differentiation in either a hand-
held calculator or computer software.

CAS is not a crutch to do for students what they
should be able to do for themselves. CAS is a force
multiplier that makes for a more efficient use of study time
for the student and allows professors to change course
priorities. Much of the time that is spent on drill and
memorization is eliminated. Topics and problems that were
not accessible before can now be explored using CAS and
other computer support.




The sculptor’s approach to a "lean" calculus will
be a work of art and is probably still a couple of years in
the making. Central to this approach are new textual
materials which incorporate several major differences from
the same "ole brewski."

Emphasis must shift to conceptual understanding
and problem solving and away from memorization and drilling
on formulas. More writing requirements and interpretation
of results should be emphasized instead of the production of
results. Differential equations should be integrated
throughout the calculus textbook instead of being treated in
isolation. Finally, CAS and other computer capabilities
should be integrated into the text to capitalize even more
on the new technology.

3'50 " i " .

Many ideas for implementing a "lean" calculus
exist. What seems to be more difficult is the question of
how to "liven-up" the calculus program. We look to
relevance and experimentation. We intend to emphasize the
relevance of calculus to the solving of problems --
motivational and carry-over. We also intend to emphasize
experimentation and the discovery of new techniques to solve
interesting but previously unsolvable problems.

Several special problems have already been
developed for use in the calculus program that emphasize
integration and modeling and solution of differential
equations. New carry-over problems are being developed in
probability and statistics as well as optimization and
economics.

Computers, CAS, and specialty software will play
two major roles in the lively calculus. The use of
computational software opens up a wider variety of problems
that are more realistic and interesting for students to
solve. The student is also much more inclined to explore
the nature of functions and discover their properties with
the use of computers.

Cadets at USMA currently own The Calculus Toolkit,
the Midshipman’s Plotting Package, and DERIVE, CAS for IBM
compatible PC’s.




4. Probabili { Statisti

The USMA probability and statistics course is the
capstone of the mathematics required of all cadets and is 3
credit hours. In negotiating this course we expect students
to show sophistication and technical maturity. When
students come to us from their precollege experience their
learning is essentially skill based; and the pedagogy and
material at the beginning of our core curriculum reflect
this as a point of departure. Our curriculum is designed to
gradually wean students from this learning aporoach
culminating in this final course, probability and
statistics, in which the learning is wholly cognitive; very
little time and class reward is devoted to skill learning.
The issues confronted by the student are not closed form and
require him to interpret his mathematical manipulations.

Because the course is conceptual in character, we
emphasize the unified structure of the study of uncertainty.
Computation is pushed off to software (currently MINITAB).
Learning is socratic in character; students are directed in
such a way that they "discover" the two distributions that
form the center of the course; one discrete and one
continuous. It is our goal that students internalize the
idea that once an issue can be modeled by a random variable
and its distribution, one has a complete guage of the
inherent uncertainties. While only two distributions are
formally developed in class, students are expected to 1lift
the essence of a distribution to other functions; to
generalize the concepts and apply them to problems other
than the two ‘learning examples.’

Our transition to statistics appeals to the intuitive
notion that the character of a population can be forecast
from a suitable subset of the population. The notion of
"sample space", first discussed in probability, is replaced
with the space of all subsets of a fixed size (”the sample
space of samples of size n"). The student observes that
measures taken on these samples meet the definition of
random variables on this new sample space. At this point
the structure of the course quickly narrows his
consideration to two such measures: mean for central
tendency and variance for spread. This approach causes
students to take the perspective that the most important
need for interpreting a sample outcome is to characterize
the distribution of these measures.

This perspective leads to the study of the Central
Limit Theorem. The result of the theorem is motivated
experimentally; first by mechanical means (e.g. drawing
numbered slips out of a container) and then through computer
simulation. It is beyond the scope of the course to provide
an analytic proof of the theorem, but students have a strong
intuitive appreciation of the result.




Establishing the distribution of the variance is less
elegant. It is our assessment that the knowledge required
to logically develop the relationship between the
distribution of the variance and the corresponding Chi-
squared distribution would demand an effort all out of
proportion to the gain in a one semester course. Thus the
transformation of variable is simply given as an analogue of
the Z-transform with which they have become familiar.

Central to the course is a case study that, in an actual
example, reviews and reinforces all the ideas discussed. 1In
addition to accomplishing the technical analysis of the
issues, students are required to interpret their "numbers."
Furthermore, the minimum course standard requires that their
case study be in a professionally acceptable format. This
includes embedding files from their statistical software
into their word processing files and integrating
mathematical exhibits with text. To reinforce the Case
Study’s importance, the grade for the effort is one third of
their final exam.

A remark on the choice of case study is in order. We
have found the learning is far greater 1f the topic is taken
from actual student experience, something that effects their
lives. For example, we selected as a population the grades
of a preceding class and asked them to draw conclusions
about the types of career success these students enjoyed and
how that was correlated to various academy successes:
academic grades, military leadership grades, and physical
fitness grades. This case study was far more successful as
a learning tool than an earlier one that investigated a very
important weapons systems (the Bradely fighting vehicle) but
a subject that was only vicarious to sophomore level cadet.
We concluded that having as an object of study something
that the students actually experience and see as real
imposes and sense of urgency in their study; students want
to understand those issues that influence their lives now.

Completion of the course poises students to address
problems:

- That require interval estimates of parameters.

- That establish rational decision values for
experimental variables.

- That require simple design of an experiment.

The course does not leave them as skilled statisticians.
However, it does blend together the key elements of all
preceding mathematics courses. It prepares them to use
quantitative methods to solve significant and unstructured




problems that require sophisticated interpretation. And it
prepares them to communicate their findings imr a clear and
professional manner.

5. Research Program.

This is a brief description of the faculty and student
research program of the Department of Mathematics. With
regard to faculty basic and applied research, the
departmental program supports the philosophy of the USMA
Superintendent, LTG Palmer. 1In a position paper, he stated:

"...The faculty at USMA constitutes a
valuable resource to the Army [and the
nation at large] in that nowhere else is
there as large a concentration of highly
educated personnel as at West Point. The
potential of this resource to solve Army
problems should be fully exploited ...

"These officers will take this valuable
experience back to the Army with them, and
many will put it to good use in positions
in the acquisition system such as project
manager. Thus USMA will provide the Army
with officers that understand the reserch
process and who will not be technically at
the mercy of government contractors ... [8]

There is no question that the Department has committed its
faculty to the furtherance of knowledge in the areas of
prime concern to the Army and nation. Over 20 of the 60
officers in the Department were directly involved in
significant research or consulting projects during the last
academic year. These projects are described in {9] and
include applications in many areas of mathematics and
science, i.e., numerical computing, fluid dynamics, number
theory, underwater and atmospheric acoustics, probability
distributions, statistical analysis, time series, computer
aided design, computer aided instruction, air defense
methodology, signal processing, financial modeling, and
combat modeling. In addition, 18 officers spent time during
the summer of 1989 at an Army laboratory or government
agency performing research or consulting. Many other
instructors were involved in smaller part-time efforts. The
cenured faculty particularly were involved in this effort
through consulting with Army laboratories, schools, and
agencies, attending conferences, presenting results, and
publishing in technical journals.
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Under the direction of MAJ John S. Robertson, the
Department of Mathematics research program was particularly
successful in 1989. Four members of the Department served
in Dean’s Research positions and were funded by the USMA
Science Research Laboratory with money from the Army
Research Office. Several other researchers received this
same funding. For the first time ever, substantial funding
was obtained from external agencies for travel, supplies,
computer hardware, software, and library services. With
this funding and direction, the future looks bright for the
Department’s research program.

One enhancement for the program may come from the
Department’s use of Foundation Schools for instructor
education. Starting this year, all the non-tenured faculty
(85% of the Department’s strength) will receive their
masters-level education at one of three schools, Georgia
Tech, Rensselaer Polytechnic Institute, or the Naval
Postgraduate School with degrees in either applied
mathematics or operations research. This program will
enable the tenured faculty to interface with the officers at
an earlier stage for better control of professional
development with emphasis on finding research opportunities
that can continue while the officer is assigned to the
Department.

The student-research program is focused in two areas:
Volunteer Summer Training (VST) and a 3-credit Research
Seminar (MA 491). Over the last two years, over 25 cadets
have participated in a 4-6 week VST research program at many
agencies including TRADOC Analysis Center-Monterey,
Ballistic Research Laboratory, Natick Laboratory, Concepts
Analysis Agency, and Los Alamos National Laboratory.
Several cadets have completed the MA 491 course through
their undergraduate research in topics such as numerical
computing, chaos and fractals, combat modeling, and
financial modeling.

As we head into the 1990’s, research has taken an
important place in the Department of Mathematics. Student
and faculty involvement in research activities has been
beneficial and rewarding and most likely will continue to
grow in the future.
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Modeling and Estimation for Multiresolution
Stochastic Processes
A.S. Willsky!

1 Multiscale Representations and Homogeneous
Trees

The recently-introduced theory of multiscale representations and wavelet transforms
(4] provides a sequence of approximations of signals at finer and finer scales. In1-D a
signal f(z) is represented at the mth scale by a sequence f(m,n) which provides the
amplitudes of time-scaled pulses located at the points n2~™. The progression from
one scale to the next thus introduces twice as many points and indeed provides a
tree structure with the pair (2~™,n) at one scale associated with (2-(™*V) 2n) and
(27(m+1) 2n + 1) at the next. This provides the motivation for the development
of a system and stochastic process theory when the index set is taken to be a
homogeneous dyadic tree. In this paper we outline some of the basic ideas behind
our work.

Let 7 denote the index set of the tree and we use the single symbol ¢ for nodes on
the tree. The scale associated with ¢ is denoted by m(t), and we write s <t (s < t)
if m(s) < m(t)(m(s) < m(t)). We also let d(s,t) denote the distance between s and
t, and s At the common “parent” node of s and ¢ (e.g. (2™,n) is the parent of
(2-(m+1) 2n) and (2-(™+1),2n + 1). In analogy with the shift operator z~! used as
the basis for describing discrcte-time dynamics we also define several shift operators
on the tree: -0, the identity operator (no move); 71, the fine-to-coarse shift (e.g.
from (2-(™+1) 2n or 2n +1) to (27™,n)); a, the left coarse-to-fine shift ((2-™,n) to
(2-(m+1) 2n)); B, the right coarse-to-fine shift ((2~™,n) to (2-(™*1) 2n +1)); and 4,
the exchange operator ((2-(™+1) 2n) «— (2-(m+1) 2n 4 1)). Note that 0 and § are

!This research was supported in part by the Army Research Office under grant DAAL03-86-K-
0171 (Center for Intelligent Control Systems), AFOSR grant AFOSR-88-0032 and the NSF under
grant ECS-8700903.
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isometries in that they are one-to-one, onto maps of 7 that preserve distances.

Also we have the relations
#=1la=y""=0,7=7",88=a (1.1)

It is possible to code all points on the tree via shifts from an arbitrary origin node,

1.e. as wiy, w € L, where
L=(1U{a,pB}6(v1)U{aB} (1.2)

The length of a word w is denoted |w| and equals d(wt, ) (e.g. |7~} =1, |6] = 2).
Also, since we will be interested in coarse-to-fine dynamic models, we define some

notation for causal moves:

w=20(w~<0) ifwt <t (wt<t) (1.3)

2 Modeling of Isotropic Processes on Trees

A zero-mean process Y;, t € T is isotropic if
EY,Y,] = ru(e,) (2.1)

i.e. if its second-order statistics are invariant under any isometry of 7. These pro-
cesses have been the subject of some study, and a Bochner-like spectral theorem
has been developed [1,2]. However, many questions remain including an explicit
criterion for a sequence r, to be the covariance of such a process and the repre-
sentations of isotropic processes as outputs of systems driven by white noise. Note
first that the sequence {Y,-»;} is an ordinary time series so that r, must be positive
semidefinite; however, the constraints of isotropy require even more. To uncover
this structure we have developed in [2] a complete characterization of the class of

isotropic autoregressive (AR) models where an AR model of order p has the form

Y, = Z ayYye + oW, (2.2)
w=<0
fwl<p

14




where W, is a white noise with unit variance. Note that this model is “causal”—i.e.
it has a coarse-to-fine direction of propagation—since w < 0. Also, a first thought
might be to examine models with strict past dependence, i.e. Y; a function of W, -ny;
however as shown in [2], the constraints of isotropy allow us to show that only AR(1)
has such dependence. Thus we have that AR(p) involves a full set of 2°~! a,’s and
one ¢ so that the number of parameters doubles as p increases by one. In addition as
shown in [2], isotropy places numerous polynomial constraints on these parameters.
As we develop in [2] a better representation is provided by the generalization of
lattice structures which involves only one new parameter as p increases by one.

Let H{:--} denote the Gaussian linear space spanned by the variables in braces
and define the (nth order) past of the node ¢:

Vin £ H{Yue: w <0, |w| < n} (2.3)

As for time series, the development of models of increasing order involves recursions
for the forward and backward prediction errors. Specifically, define the backward

residual space:
yt,n = yt,n—l 7 f't.n . (24)

where F; , is spanned by the backward prediction errors
Fin(w) = Yt — E (Yot| Ven-1) (2.5)

where w £ 0, |w| = n. These variables are collected into a 2[¥]—dirnensiona.l vector
(see [2] for the order), Fi,. For |[w] < n and w < 0 (i.e. m(wt) = m(t)) define the

forward prediction errors:
Eun(w) £ Yot — B (Yuel Vy-10-1) (2.6)

and let & , denote the span of these residuals and E, , the 2["2;‘]—dimensiona.l vector
of these variables (see [2]).
The key to the development of our models is the recursive computation of F;,

and E, , as n increases. The general idea is the same as for time series but we must

deal with the more complex geometry of the tree and the changing dimensions of




F, . and E; . In particular, as shown in [2], it is necessary to distinguish between n
even and odd and between different groups of the components of F}, and E, .. For
example, F,, consists of F;,(w) in eq.(2.5) with |w| = n, w < 0. Suppose that n is
even and consider elements of F; , for which jw| = n, w < 0. In this case w = wy™!
for some w < 0, with |@| = n — 1, and by an argument exactly analogous to the

time series case we obtain the recursion:
Ft.n(w) = F‘V"t,n—l(w) -E [Fv"lt,n-l(w)lEtm—I] (2-7)

This procedure identifies several projections, as in eq.(2.7), to be calculated. A key
result is that these projection operators can in fact be reduced to scalar projections
involving a single new reflection coefficient and the local averages or barycenters

of the residuals:

e = 27071 T Epa(w) (2.8)
lw|<n,wxo0

fin = 2761 Y Fa(w) (2.9)
lw|=n,w=<0

For example, the projection in eq.(2.7) is the same for all such % and in fact equals
E[Fy-1¢n-1(W)|€t,n-1]- This and related expressions follow from the properties of
isotropy and from a very important fact: any local isometry, i.e. a map f from
one subset of A onto another that preserves distances, can be extended to a full
isometry on 7.

As a consequence of this result, we can obtain scalar Levinson recursions for
the barycenters themselves [2]. These recursions introduce a sequence of reflection
coefficients, k,, and lead to a generalization of the Schur recursions for time series.
In (2] we also show how these same k, can be used to construct whitening and
modeling filters for Y; and we present a stability result analogous to the time series
case. In this case, however, the condition is somewhat more complex: for n cdd we
have the same condition as for time series, namely |k,| < 1; for n even, however, we
must have —1 < k, < 1. In addition we demonstrate in [2] that the class of AR(p)

processes are completely equivalent to reflection coefficient sequences with k, = 0,




n > p and we show that these processes are exactly the isotropic processes with

impulse responses with support on a cylinder of radius [2] about the strict past y™".

3 State Models and Multigrid Estimation

A second class of models displaying coarse-to-fine structure is specified by state

models of the form
z(t) = A(m(t))z(y~'t) + B(m(t))w(t) (3.1)

where w(t) is a vector white noise process with covariance I. The model eq.(3.1)
describes a process that is Markov scale-to-scale and, because of this, we can readily
calculate its second order statistics. For example in the case in which A and B are
constant and A is stable, eq.(3.1) can describe stationary processes, where the

covariance of r satisfies the Lyapunov equation
P, = AP, AT + BBT (3.2)
and the correlation function is
K.o(t,s) = ANNI P (AT )00 (3.3)

In the scalar case, or if AP, = P,AT, eq.(3.1) describes an isotropic process, but in
general eq.(3.1) describes a somewhat larger set of processes.

Consider now the estimation of z(¢) based on measurements

y(t) = C(m(t))z(t) + v(t) (3.4)

where v(t) is white noise of covariance R(m(t)), independent of z. In many prob-
lems we may only have data at the finest level; however in some applications such
as geophysical signal processing or the fusion of multispectral data, data at multiple
scales is collected and must be combined. In [3] we describe three different algorith-
mic structures for estimating z(¢) based on the measurements in eq.(3.4). One of

these involves processing from one scale to the next. This structure resembles the
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Laplacian pyramid processing structure [4] and can be performed extremely quickly
using discrete Haar transforms.
A second structure is based on the following equality which can be derived from

the Markovian structure of eq.(3.1):
2(t) = Lid(r™t) + Ly(é(at) + 2(82)) + Loy(?) (3.5)

where L,, L., and L3 are gains (depending upon scale in general). Eq.(3.5) describes
a set of coupled equations from scale to scale which can be solved by Gauss-Seidel
relaxation that can be structured exactly as in multigrid algorithms for the solution
of partial differential equations.

A third algorithm involves a single fine-to-coarse sweep followed by a coarse-
to-fine corrrection. In the first step we recursively calculate the best estimate of
z(t) based on observations in its descendent subtree. This recursion involves three
steps, which together define a new Riccati equation: a backward prediction
step to predict from at and Bt to t; a merge step, merging these two estimates;
and an update step incorporating the measurement at ¢t. The merge step is the
new feature that has no counterpart for standard temporal models. Once we have
reached the top node of the tree, the downward sweep has the same form as the
Rauch-Tung-Striebel form of the optimal smoother for temporal models (allowing
of course for the proliferation of parallel calculations as the algorithm passes from
coarser to finer scales): the best smoothed estimate at t is calculated in terms of the
best smoothed estimate at v~'¢ and the filtered estimate at that node calculated

during the upward sweep.
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ABSTRACT. We present stochastic model-based methods both for restoring images

corrupted by impulse noise and for detecting edges in an image which may be caused either
by changes in intensity or texture.

The image is represented by a nonsymmetric half plane autoregressive model driven by
impulse contaminated Gaussian noise. This type of noise is more commonly encountered in
real images, unlike the pure Gaussian noise treated in ecarlier papers. We develop an image
restoration algorithm given only the image corrupted by additive noise, the original clean
image or its model being unknown. We show that this method gives much better results than
currently available methods based on median filters or alpha-trimmed filters.

Next we develop methods which can detect both intensity edges and texture edges. It is
well known that traditional edge detection methods have difficulty in detecting texture boun-
daries. We first generate edge hypotheses. We use two different procedures for confirming
whether it is an intensity edge or a texture edge. We give several examples to illustrate the
efficacy of the proposed approach.

I. NTRODUCTION AND OVERVIEW. In the past decade, there has been remarkable
progress in the research on statistical image models and their applications. Statistical image
models (often called random field models or spatial interaction models) represent the image
intensity of a given picture by a small number of parameters. There are many applications of
image models in image processing and analysis. For instance, they can be used for image
synthesis (Kashyap, 1984; Cross and Jain, 1983), image restoration (Chellappa and Kashyap,
1982; Geman and Geman, 1984), image coding (Delp et al., 1979), texture boundary detec-
tion (Kashyap and Eom, 1985a), and texture analysis (Kashyap and Khotanzad, 1984).

For the application of image models to such image processing tasks, we need to esti-
mate the parameters in the image models. There are many different estimation algorithms
for different image models, but most of these methods are based on the assumption of Gaus-
sian image intensity distribution. However, the actual distribution of image intensity

T
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deviates from the Gaussian assumption, and traditional estimation methods are very sensitive
to minor deviations from the Gaussian assumption. During the past few decades, many esti-
mators which are robust to the deviations from the Gaussian assumption have been proposed
(Huber, 1981), but they are rarely applied to image modelling.

Robust estimation procedures for several different image models are developed and
applied to some important image processing problems such as image segmentation and
image restoration in this study.

A. Robust Statistical Procedures

There has been considerable interest in robust methods in statistics in recent years. This
is because most statistical inference methods are based on rather restrictive assumptions
about the observations and models, such as independence of observations, distribution of
observations, etc. However, these assumptions do not always hold. and many statistical pro-
cedures are very sensitive to minor deviations from the given assumptions. For example, it
is well known that least squares methods are excessively sensitive to a small number of
outliers.

The term robust was introduced by G.E.P. Box in 1953, and a procedure is called robust
if it is reasonably good (optimal or near optimal) if the assumption holds, and it is not sensi-
tive to small deviations from the assumption. Primarily robustness implies distribution
robustness, i.e., the robustness about the small deviations from the assumed distribution (usu-
ally Gaussian). The resistance to outliers is considered equivalent to the distribution robust-
ness (Huber, 1981).

There are several types of robust procedures: M-estimators, L-estimators, and R-
estimators. Among these, M-estimators have an advantage over other procedures because
they can be extended to the parameter estimation problems in image models. In contrast,
either L-estimators or R-estimators are difficult to generalize well beyond one parameter
location or scale problems. The robust M-estimators are applied to the parameter estimation
problem of causal autoregressive models. Two different outlier processes are considered,
and iterative robust estimation algorithms for both of the outlier processes are developed.
Theoretical properties of the proposed robust estimators are investigated.

B. Image Models

Image models characterize the image intensity surface with a small number of parame-
ters. Image models can be divided into two groups, namely, descriptive and generative
models. A descriptive model for an image summarizes the intensity distribution into a finite
number of statistics. An example is the cooccurrence matrix (Haralick, 1973) used in texture
analysis. The generative model, on the other hand, allows one to synthesize an image obey-
ing the given model by using the model description and a set of random numbers. We will
restrict ourselves to generative models since they can be used for many varieties of
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applications.

We can further divide the generative models into two large classes. In the first class,
the observed intensity function y(i,j) is assumed to be the sum of a deterministic function -
usually polynomial or sinusoid - and an additive noise. In the second class, the image inten-
sity function is generated as the output of a transfer function whose input is a sequence of
independent random variables. The transfer function represents the known structural infor-
mation on the image surface; the independent random sequence accounts for the unknown
part. Note that the neighboring pixels are highly correlated, unlike in the earlier case, and
the transfer function accounts for the covariance.

C. Applications

Image restoration and image segmentation are two important branches of image pro-
cessing. Image restoration is needed to recover the original image from the image corrupted
by noise (including impulse noise), and image segmentation procedure, especially edge
detection or boundary detection, is involved in most high level image processing problems.
Robust image models are developed and applied to the above image proces.ing problems in
this study.

1. Image Restoration

An image may be subject to noise and interference from many different sources, and
image restoration is used to remove noise from the given image. Traditionally, noise distri-
bution is assumed as a Gaussian distribution, and many different restoration algorithms based
on Gaussian assumption have been introduced (Pratt, 1978; Rosenfeld and Kak, 1982).

Recently, image models have been used in image restoration applications. For exam-
ple, Chellappa and Kashyap (1982) used a simuitaneous autoregressive model and condi-
tional Markov model, Wu (1985) used a nonsymmetric half plane autoregressive model and
two-dimensional Kalman filtering approach, and Geman and Geman (1984) used a family of
Markov models. Even though the above examples show some successful applications of
image models in the image restoration problem, all of the above methods are designed to
remove Gaussian noise, and are not very effective to remove impulse noise (Pratt, 1978).

Traditionally, median filter and its generalizations (Kassam and Poor, 1985) are used to
remove impulse noise (also called salt-and-pepper noise) from the noisy image. These
methods are simple applications of robust location parameter estimators, such as median or
o-trimmed mean, where image intensity is assumed constant over a small size window.
However, the restored images by these methods are blurred (Pratt, 1978).

Robust image model approaches are applied to the image restoration problem in our
study. The original image intensity is assumed to follow an image model, and parameters
are estimated by a robust estimation algorithm. The image is restored by applying a data
cleaning algorithm with the robustly estimated parameters. The robust model-based method
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performs better than any other traditional method in the experiment.

2. Edge and Segment Boundary Detection

Edge detection or boundary detection is a fundamental step in scene analysis. Tradi-
tionally, an edge is defined as a boundary between two uniform regions, where the intensity
of each region is uniform and the intensity difference between two regions is large. Most
edge detection algorithms are based on the gradient operator or the Laplacian operator
(Robinson, 1977), which is sensitive to a change of intensity. Recently, some modei-based
edge detection approaches are proposed (Haralick, 1984; Zhou and Chellappa, 1986), but
they are also based on the derivatives methods using decision rules with estimated model
parameters.

For the higher level processing, the edges should be able to distinguish the shape of
each object from the background of an i nage. However, intensity edges are sometimes not
satisfactory to represent an object and distinguish it from the background, because the inten-
sity of an object or a backgrourd is not uniform. For instance, a grass lawn in an outdoor
scene is homogeneous by its texture property, but it has many intensity edges within the
region. The above example suggests the necessity of detecting boundaries (or edges) by its
texture property.

Image models are already used in synthesizing textures which are very similar to real
textures, and the estimated parameters which are obtained by fitting an image model to the
given image can be used as texture features. The texture features derived from image model
or from other methods can be used to segment an image by a statistical classification method,
if the number and types of textures in the given image are known in advance. However, the
above prior information is generally not available.

A composite edge detection algorithm is developed in this study. The composite edge
detection algorithm combines the model-based texture boundary detection method and a con-
ventional intensity edge detection method. This algorithm detects all potential edges by a
directional derivatives method, and final edges are confirmed whether they are texture edges
or intensity edges. This algorithm is also compared with other conventional edge detection
methods in the experiment. The composite edge detection algorithm performs better than
other conventional methods which detect only intensity edges in the experiment.

II. AR AND ARMA MODELS.

A. Introduction

It is claimed traditionally that a complete stochastic description of an MxM array of
pixel intensities y(s) is given by the joint probability density of the M? intensity variables
y(*). Even writing down the expression is horrendous considering that the typical value of M
is 128 or 256 or 512. As a consequence, it was often conjectured that probabilistic models
may not be of much use in solving interesting problems in image processing. The purpose of
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this paper is to draw attention to the existence of a large class of image models which can be
characterized completely in terms of the second order properties of the image sequence, i.e.,
the correlations E[y(s)y(s+r)] or the corresponding spectral density. Consequently these
models are relatively easy to analyze. It must be emphasized that the joint probability den-
sity of all the intensities is not assumed to be Gaussian.

In the beginning, we will focus our attention on the two-dimensional generalization of
the autoregressive (AR) models and autoregressive moving average (ARMA) models popu-
lar in the time series analysis. Basically all these two dimensional models can handle
rational spectral densities, i.e., the ratio of two linear combinations of sinusoids in the two
frequency variables in the direction, just as in the one dimensional case. However, there are
many differences between the 1D and 2D cases which will be highlighted in this section. For
example, in the 1D case, the correlation function is an exponentially decaying function of the
lag variable. But in the 2D case, one rarely encounters the exponential correlation function.
Similarly in the 1D case, the driving input random sequence is both statistically independent
and uncorrelated with the dependent variables in the past. In the general 2D case, the input
sequence cannot possess both these properties simultaneously.

Secondly, we will consider the various possible ways of defining the weak Markov pro-
perty in the 2D case. By weak, we mean that the corresponding Markov property can be
described completely in terms of the second order properties like correlation or spectral den-
sity. The traditional Markov property defined in terms of the probability densities is termed
as the strong Markov property. A sequence cannot be strong Markov without being weak
Markov. We will characterize the various subclasses of 2D AR and ARMA models which
possess various types of weak Markov property.

We recall that the general AR or ARMA models mentioned above are not recursive, in
general. Still these models are generative in principle, i.e., it is possible to give an algorithm
which generates a sequence which obeys a prespecified model. However, the amount of
computation involved may be considerable. We will consider modifications or approxima-
tions of the AR or ARMA models so that it is relatively easy to synthesize an image obeying
a given model.

Preliminaries:

We will consider a covariance stationary array of the real numbers {y(i,j). —e, < i,j <
=}, i,j being integers. i,j,k stand for integers. s,t,r stand for two dimensional vectors specify-
ing the grid points. Often we are given a finite MxM image {y(i.j), (ij) € Q}, Q= {(i,j): 0<
1,j S M-1}. y(s) is the intensity at the grid point s. Typically if s = (i,j), i stands for the row
number, numbered increasingly from top to bottom, and j is the column number, numbered
from left to right. The corresponding vector of real frequencies is denoted by
A =(A1,A2), Ay being the row frequency, and A, being the column frequency. Similarly z,
and z; are the unit lead operators in the row and column directions, respectively.
Specifically, z,y(i,j) = y(i+1.j), z2y(i,j) = y(i,j+1). We will also interpret z; as complex
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variables by the relation z; = exp[‘/:ki], i=12. A,zr,s,t, etc., will be considered to be
row vectors. The vectors composed of image intensities y(*) or the input primitive random
variables v(*), w(*) will usually be column vectors. An image is said to have a trend if
E[y(i,j)] is a deterministic function of i and j. An image is said to be covariance stationary if
the covariance function defined below is a function of i and j alone and not a function of s,
and hence is denoted by R(i,j)

E[(y(s) = ¥)(y(s + (i.))) = )] =RE.j)

where y = E[y(s)].

A covariance stationary random field in which ¥y is a constant is called as weak stationary. A
random field (y(s)} is said to be isotropic if R(i,j) = R(}il,|il) = R(,i). For a covariance sta-
tionary RF, we can define a spectral density.

SA) = T R(s)exp(N-1 s+ 4]

se?

= 3 3 RGusexplVol (s:h+8202)]

§)=—00 §3=—o0

Another important second order measure of an RF model is the variogram
Vi(s) = E[(y(s) - y(s+r))2] = function of r only if y(-) is weak stationary. The covariance
function R(-) can be recovered from S(A) by the usual Fourier integral

R = [ SWexp(N=1 A+ r] |dA|
A'=()'l’)'2)al"=(i’j) 'dA'l:Id}"lI'dlZl

Another important concept is the neighbor set. A neighbor set is a set of grid points
whose coordinates are near 0, but Q itself is not a member of a neighbor set. N is said to be
symmetric if re N=%*re N.

Popular neighbor sets are the ones having 4 nearest neighbors and 8 nearest neighbors.

X X X X
X X X X

x X X X
4 neighbor N 8 neighbor N
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A neighbor set N is said to be semicausal if the row coordinates (or column) of all
members are the same sign. Some examples of the semicausal neighbor sets are given
below.

X X X X X X X X X
X X X X X X X X X
X X X X
X ¢ X
X X X X

where - stands for origin.

B. 2D AR Processes

Consider a real valued stationary process possessing a spectral density of the form

S(A) = 1/[positive linear combination of sinusoids in A;,A;]

Our first step is to enquire whether y(*) can be expressed as the output of a system character-
ized by a two dimensional rational transfer function of finite order, the input being some ele-
mentary stochastic process, say v(*). Toward this end, consider the system described by the
difference equation where v(*) is the elementary input

y(s)= 3 O,y(s+n) +Vp v(s), 6, =6_y, 1)
reN

where N, a so-called neighbor set is a set of grid points possessing symmetry, i.e., if s € N,
then -s € N. All Ny neighbor sets can have the origin O for its member. However, not all
neighbor sets may be symmetric. Define the two dimensional polynomial A(z;,z;) in terms
of the coefficients 6,

A,z)=A@=1- T3 0;;zizb
GjeN

The coefficients {8, ) in (1) obey the following condition defined in terms of the polynomial
A:

A(z;,2)>0 ¥Y|z;| =1 and |z5]=1. (2)

In addition, the input v(*) in (1) is assumed to have zero mean and be orthogonal to all y(*),
ie.,
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E[v(s)y(s+r)]=0 ¥r=0, A3)

We also assume E[v2 (s)}=1. The parameter p in (1) can specify the relative power of the
input term.

We can also rewrite Eq. (1) compactly in terms of the polynomial A:

A@)y(s)=Vp v(s). @)

In defining (4), z; are interpreted as the unit lead operators in the two directions.

Equation (3) defines the process v(*) only indirectly. The precise structure of the pro-
cess v(*) is not obvious. We will derive later an expression for the spectral density of v(-)
using (1)-(3).

Equation (3) can be thought of as defining a v(*) process given a y(*) process. It is not
obvious here how to generate a y(+) and a v(*) sequence obeying simuitaneously (1)-(3). We
will later show constructively that there do exist infinite sequences y(+) and v(*) obeying (1)-
(3).

Structure of v(+) process

The following theorem gives the spectral densities of the processes y(*) and v(*) which
obey (1)-(3).

Theorem 1: The spectral density of y and v obeying (1)-(3) are given below:

- _P
Sw (A) =A; 0\-) ’ (6)

where A;(\) = A(2;,22), 2 = exp[N=1 A;].

Proof:
We will obtain a difference equation for the covariance function of y. Note E(y(*)) = 0.
Let R(t) = E[y(s)y(s+t)]. Multiply (1) by v(s), take expectation on both sides, and use (3).
Ely(sV(s)] = \p E[v2(s)]
=p. %)

Next multiply (1) by y(s+t) on both sides and take expectation
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R®) = ¥ 68;R(r—t) + Vp E(v(s)y(s+1))

reN
=3 6Ra~1)+p 80, @)
reN
by using (3) and (7), where
do=1if t=0
=0 otherwise
Take Fourier transform of (8)

(1- 3 8exp(N=1 ATD)S,y M) =p,
reN

ie., or Syy(\) = ﬁ(?»)"

To prove (6), take spectral density of both sides of (4).

P Swv () = [|A(z =exp(N1Ay), zp=exp(N=1A2))[12S,y ()

= [JA; WIFS,y V),

Using (5) for S,y (A), the above equation yields the required expression for S, (A) in (6).

The proof is given in some detail because it gives the difference equation for Ry(t). In
addition, the above proof indicates the existence of a process y(*) obeying (1)-(3) by demon-
strating its spectral density.

The v(*) process is an analog of a one-dimensional moving average process. Its covari-
anze function is

E[v(s)v(s+r)] =-0, if re N
=1 if r=0 9
=0 ,elsewhere

However, one important distinction between 1D and 2D cases lies in the fact that it cannot
have a 2D version of moving average representation, i.e., it cannot be represented as a finite
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linear combination of independent random variables. The reason is that the symmetric poly-
nomial A(z,;,z;) cannot be factored, i.e., it cannot be expressed, in general, as a product of 2
finite polynomials.

Converse of Theorem 1:

This section started with the assumption (3) on v(*). What would be the structure of the
process y{°) if v(-) is assumed to be white? We will prove the converse of Theorem 1 and
show that a process with inverse sinusoidal spectral density does not in general have any
representation other than (1). The exceptions will be handled later.

Theorem 2: Consider a zero mean stationary process y(*) having a spectral density as shown
below

S,y(A) = p/[a positive linear combination of sinusoids in A;,A2]

ie., Sy(M=p/A(z;,z2), z = exp(V=12y), (10)

and A(z;,zp)=1- Y 6,7
reN

where N is symmetric, 6,=0_, and A(*) obeys (3). Then define v(-) as:

MO OES y(S+r))/‘/— ,
reN

Then

E[v(s)y(s+r)] =0, ¥r=0.
Proof: By definition

v(s) = A@)YENp

Multiply both sides by y(s+t) and take expectation

Ruy(-0) = A@Ry, /\p

Take Fourier transform of both sides

Sy (MAA1,22)S,y MNP, z = exp(V-1%;)
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=\p by (10),

Hence E[v(s)y(s+r)] =0 ifr#0.

Expression for the Correlation

In the one dimensional case, the correlation function is a linear combination of the
exponentially decaying function of the lag term given that the spectral density is a ratio of
linear combinations of sinusoids. Such a result is not true in the 2D case. Exponential corre-
lation functions are rare. We can evaluate the correlations from the spectral density by
numerical integration. We will give one example below.

Example: Consider the 4 member symmetric neighbor set.

Let y(s)=8 ¥ y(s+0) + Vpv(s)
reN

N=[(@j), lil =1 or |j] =1, not both]
The spectral density is

— p
St = 1-26(cosA +cosh;)

Here y(°) is isotropic.

For discussion of other models, see (Kashyap, Eom, 1988).

III. ROBUST ESTIMATION IN CAUSAL AUTOREGRESSIVE MODELS.

A. Introduction

The importance of model-based techniques for image processing tasks such as edge
detection, image synthesis, image coding, image restoration, etc., has been well documented.
However, in all of these models, the image intensity array is assumed to be a multivariate
Gaussian distribution. The Gaussian assumption is used primarily in estimating the parame-
ters of the image model fitted to the image. The corresponding estimation procedure is rela-
tively easy; for example, for the causal autoregressive model, the maximum likelihood
method is the same as the least squares method. However in many applications, it is well
known that the Gaussian assumption is not appropriate.

A more realistic assumption is a contaminated Gaussian noise,
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Cij) = {W(l, j), with probability 1~ (1

v(i,j), with probability

where w(i,}) is a regular white Gaussian noise and v(i,j) is an outlier process and the ratio of
outlier P is assumed small (less than 5%).

Unfortunately, least squares estimators or maximum likelihood estimators under the
Gaussian assumption are very sensitive to minor deviations from the Gaussian noise assump-
tion. Even a single bad data (outlier) among 1000 observations can cause a large error in the
estimator. Because of this excessive sensitivity of least squares estimators, a robust estima-
tor is needed in image models. A robust estimator should possess the following properties:

(1) It should have a reasonably good (optimal or nearly optimal) efficiency at the assumed
noise distribution.

(2) It should be robust in the sense that a small number of outliers impair the performance
only slighty.

(3) Somewhat larger deviations from the assumed distribution should not cause a catas-
trophe.

The resistance to outliers (e.g., impulse noise) is equivalent to the distribution robust-
ness by Hampel’s theorem (Huber, 1981). Many different robust estimation algorithms have
been developed in the last twenty years, mostly on the location parameter estimation. These
robust estimation algorithms can be classified into three large types of estimators: M-
estimator, L-estimator, and R-estimator. M-estimator is a maximum likelihood type estima-
tor and it is obtained by solving a minimization problem. L-estimator is a linear combination
of ordered statistics. R-estimator is derived from the rank tests. We are mostly interested in
M-estimator for the application on the image models. M-estimator is easy to extend to the
problems of image models, but other types of estimators are difficult to use in problems other
than simple location parameter estimation.

M-estimator is defined by the following minimization probiem:
Minimize ¥ p(x;;0) (12)
or solve the following implicit function:
> y(x;;0)=0 (13)

where p is a continuous and differentiable convex function possessing bounded and continu-

ap(x)
ax

of the p function ensures the equivalence of (12) and (13). The boundedness and continuity

of the y function is essential in obtaining robustness of the M-estimator. If y is not
bounded, then a single gross outlier can completely upset the estimator. If y is not

ous derivative y(x)= , and p is symmetric about the origin with p(0)=0. The convexity
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continuous, then small changes in the observation x; may produce a large change in the esti-
mator.

There are several different definitions of robustness of an estimator (Huber, 1981).
Qualitative robustness is defined by weak continuity of the estimator. M-estimator is quali-
tatively robust if and only if the corresponding y is bounded and continuous. Minimax
robust estimator minimizes the maximum degradation over € deviations. The M-estimator of
location is optimal in the sense of minimax robustness. Quantitative robustness is defined by
the property of small change in asymptotic bias and asymptotic variance in the contaminated
neighborhood.

Even though a robust procedure is necessary in most image processing applications,
very little research has been done on the use of a robust procedure in image processing. In
this section, we develop estimation algorithms for the causal autoregressive image model.

B. Causal Autoregressive Model

It is well known that a large class of images can be effectively represented by various
types of image models involving a small number of parameters (Kashyap, 1981). Image
models are already used in image coding (Delp et al., 1979), image synthesis, texture
analysis, and edge detection (Kashyap and Eom, 1385a). Of course, there are many different
types of image models and these can be classified into two large classes of image models by
their second order statistical structures: classical short correlation models and long correla-
tion models. These different image models and their general properties are discussed by
Kashyap (1981).

The causal autoregressive model is a generalization of the one dimensional autoregres-
sive model. This model is simple but has good modelling performance as shown in previous
studies. Consider the following mxn image (Figure 1).
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Figure 1. An mxn image and three causal neighbors
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Assume that the image intensity in this image follows the three neighbor causal autore-
gressive model. Let (i,j) be an index for the coordinate location and y(i,j) be the intensity at
the coordinate (i,j). Then the causal three neighbors of this pixel are
{y(i-1,j),y(,j=1),y(i~1,j=1)}. This causality is from the convention of raster scanning, and
because of the causality, the resulting two dimensional model has all the convenience of the
one dimensional model.

Suppose that {{(i,j)} is a two dimensional white noise sequence with outliers as
assumed in (11). The variance of the regular part of noise is 62. Then the three neighbor
causal autoregressive model is represented by the following equation:

y(,j) =0T z(,j) + £G.j) (14)

where 0 is a parameter vector and z(i,j) is a vector consisting of intensities of three causal
neighbors and unity. The last element of the vector z(i,j) is used to represent the constant
grey level in the image.

Y(I’J_l)
y(i-1.j))
yG-1,j-1)
1

z(1,j) = (15)

It is assumed that every pixel has all of its neighbors, i.e., for each pixel at (i,j), pixels at (i,j-
1), (i-1,j) and (i-1,j-1) are available.

We consider the robust parameter estimation of the causal autoregressive model for two
cases of outliers. First case, we assume that the process y(i,j) given in (14) can be perfectly
observed. In this case, the outlier process is involved only in the noise process {(i,]) to gen-
erate y(i,j). Second case, we assume that the observation x(i,j) of the process y(i,j) is cor-
rupted by noise &(i,j). Itis given by the following equation:

x(1,§) = y(i,j) + §(0j) . (16)

The noise process § is assumed to contain outliers. In this case, the outliers are not only
involved in generating y(i,j) but are also involved in observation. In the next section, robust
parameter estimation will be discussed for these two different cases of outliers.

C. Robust Parameter Estimation with Perfect Observations

The parameters of the image model given in (14) can be estimated by robust M-
estimator. The M-estimator of the parameters in (14) is a generalization of location M-
estimator. Define the following function Q(0,G).
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1 yG.j) - 0TzG,j) |, 1
Q@®,0)= mn}: p[ S }+ >0 (17

where p is a continuous, differentiable and convex function possessing a bounded derivative,
and it is symmetric about the origin with p(0) =0. Then M-estimator of the causal autore-
gressive model is defined by the following minimization problem:

Minimize Q(6,0) . (18)

The M-estimator can also be obtained by solving the following two equations simultane-
ously.

! y(,)=6T2GJ) | 1 o _
VOQ(B,G) - mn Z‘l’ [ G ]Z (19.]) - 0 (19)
Qe _1__1 yGinj) = 072(,j) | _
do -2 mnX [ = =0 (20)
where \y(x)=—a¥ and X(x) = xw(x)—p(x), function ¥ is continuous and bounded.

The following p, W, and X functions satisfy the above conditions on these functions. In
this section, it is assumed that the following functions are used in our robust estimation algo-
rithm.

1
lx2, x| sc
p(x) =+ 1 21)
c|x|——c2, x| 2¢
c, X2c¢
W(x) = dzi") ={x —csxsc 22)
-¢, Xs—
X(X) = XY(x) = p(x) = W2 23)
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Asymptotic Property

The asymptotic property of the robust M-estimator for autoregression is investigated by
Nasburg and Kashyap (1975). The asymptotic property of one dimensional autoregression is
also applicable to two dimensional causal autoregressive model. First the following condi-
tions are assumed:

(i) {y(i,j)]} is a weakly stationary random sequence.

(i) () is an odd, monotone increasing function satisfying a Lipshitz condition.
(ili) The noise process { has finite moments up to third order.

(iv) E[y(C(i,j)+c)] = y(c) for all .

Now define éN as an M-estimator which satisfies (18) and is computed with sample size
N. The following Theorem 6 and Theorem 7 are from Nasburg and Kashyap (1975).

Theorem 6 (consistency): Under the above assumptions,

éN —0 asN -5 e wp.l

Theorem 7 (Asymptotic Normality): Under the above assumptions, \/N(éN -0) con-

verges in distribution to a normal distribution with zero mean and variance v where
2

1 ..
Vi=—a Ely?((@.i))]

and

1 PPN
V2= — BV 0.

Choice of y function

A good choice of y function is not only important for the robustness of the estimator
but is also important for the fast convergence of the iterative procedure. The theoretical
results in Section III.C are developed with the following monotone vy function yy; .

C, X>cC
YHL(X) =4 X, —<€<X<cC (24)
-, X<—C

Typical values for c are between 1.5 and 2.




¥(x)
|

-C C

Figure 2. Hard limiter type y function

Even before the theoretical work on robust estimation, the 3-G edit rule was used for
data cleaning for many years. The 3-0 rule i< a simple implementation of hard rejection rule
and corresponds to the following choice of W function.

_x Ix]<3
Yig(x) = {0’ 1x|23 (25)
¥(x)
A
-3

, - X

3
Figure 3. y function for 3-c rule

The above y function is obviously not continuous. The discontinuity of the t function
is not desirable for robust estimation as discussed before.
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Another interesting y-function is the following Hampel’s y-function. The Hampel’s
function is also continuous but returns to zero outside of some interval. It is known that the
redescending  function yields higher efficiencies than monotone v function for extremely
heavy tailed distributions (Huber, 1981; Rey, 1983). This advantage of the redescending y
function is also confirmed in our experiment: The procedure converges much faster with
Hampel’s redescending W function (26) than with Huber’s monotone y function (24). This
function performed best with parameters a=2, b=2.5, c=4.5 in our experiment.

¢

X, |x] <a
a
(b—x), a<x<sb
VA () = 4 (b;a) 26)
o) (b+x), -b<x<-a
0, |x| >b
¥(x)

A

Figure 4. Hampel’s y function

These three different y functions are compared in the experiment, and the best perform-
ing function is chosen in our algorithm. The Hampel’s function performed better than other
functions in our experiment with the parameter values given above.

IV. IMAGE RESTORATION WITH ROBUST IMAGE MODELLING TECHNIQUES.

A. Introduction

Restoration of an image in the presence of noise is one of the fundamental problems in
image processing. Let x(i,j) be the observed image intensity of the original (uncorrupted)
image intensity y(i,j) at the location (i,j) and is assumed corrupted by additive white noise




(H)2
x(1,j) = y(i,j) + §G.)) 27)

To restore image intensity {y(i,j)} from the observation {x(i,j)}, we generally make assump-
tions on the noise process {{(i,j)} and the original image intensity y(i,j). A common
assumption on the noise process is that the noise distribution is Gaussian. However, the
assumption of Gaussian noise has been seriously questioned, as we discussed in the previous
section. A more realistic assumption is that the noise is a mixture of Gaussian and impulse
noise.

(28)

£G,j) = w(i,j), with probability 1-f3
" =v(,j), with probability B

where w(i,]) is regular Gaussian noise and v(i,j) is an outlier, B is the fraction of outliers and
it is usually less than 5%.

There are many image restoration methods based on the Gaussian noise assumption.
Chellappa and Kashyap (1982) used a spatial interaction model to represent image intensity
array and restored images with minimum mean square error criterion. Geman and Geman
(1984) used the equivalence of Markov random field and Gibbs distribution and restored
images by a stochastic relaxation method with maximum aposteriori criterion. Bovick et al.
(1985) used an order constrained least squares method. Wu (1985) used a multidimensional
Kalman filtering approach and nonsymmetric half plane autoregressive model. Chan and
Lim (1985) used a cascade of four 1D adaptive filters in four different directions.

Unfortunately, most image restoration methods based on the Gaussian noise assumption
are not effective for impulse noise (Rosenfeld and Kak, 1982). The impulsive component of
the noise, which is also called as salt-and-pepper noise, is only a small portion (usually less
than 5%) of the total image but difficult to remove by the methods based on the Gaussian
noise assumption, because its amplitude is much higher than the signal amplitude. The
importance of this problem has been recognized for a long period of time. Traditionally,
nonlinear filtering methods such as median filter (Pratt, 1978) or ca-trimmed mean filter
(Bovick, et al., 1983) are used to remove impulse noise from the image. These methods use
a sliding window and the grey level of the center pixel of the window is estimated by the
median or a-trimmed mean of the samples in the window. The grey level of the center pixel
is replaced by this estimate.

These traditional nonlinear filtering methods such as median filter or a-trimmed mean
filters are based on the robust location estimator which uses a linear combination of ordered
statistics (robust L-estimator) (Huber, 1981). These methods based on the ordered statistics
are used in robust estimation of the location parameter from the 18th century (Rey, 1983).
The median or generalized median (linear combination of ordered statistics) are resistant to
the contamination of outliers. However, it is based on the assumption of constant grey level




in the window applied to the image. Obviously, this constant intensity assumption is inaccu-
rate. The image intensity in a window is continuously changing, especially near the edges or
corners. Because of this constant grey level assumption, the methods based on the linear
combination of ordered statistics, such as median filter or a-trimmed mean filter, have the
disadvantage of blurry results. The blurring effect is more severe on the a-trimmed mean
filter than median filter, because of its averaging effect even if the mean square error of the
o-trimmed mean filter is smaller than that of median filter. Median filter generally does
better in preserving edges and corners, but the well known examples (Pratt, 1978) show that
it also blurs the image.

There are two difficulties in solving the blurring problem in the traditional methods
such as median filter or a-trimmed mean filter. First, the intensity function in the window
applied to the image is unknown and difficult to be represented by a simple function.
Second, the linear combination or ordered statistics method used in traditional methods have
difficulty in accommodating the effect of changing intensity. Even though there has been a
facet model-based approach (Yasuoka and Haralick, 1983) to reduce the blurring effect after
removing impulse noise, it is based on the least squares estimator which is not robust to
impulse noise. We propose a restoration method which uses a statistical image model for the
representation of changing intensity and which uses a type of robust method, the so-callcd
M-estimator. ‘

We can use one of the image models mentioned earlier to represent intensity change in
a window of the original image. The parameters of the image model can be estimated by
robust M-estimator as shown in Section III. The robust M-estimator of the causal autore-
gressive model can be obtained by the iterative algorithm given in Section III. This estima-
tion algorithm includes a data cleaning procedure at each iteration, and it reduces the outliers
in the observed data. The convergence property of the robust parameter estimation algo-
rithm is also discussed in Section III. The image data become noise free as the number of
iterations increases, because the parameter estimates converge as the number of iterations
increases by the convergence of M-estimator of the causal autoregressive model. By this
data cleaning procedure, we can obtain the image from which most of the impulse noise has
been removed, and the original sharpness of the edges is preserved. The iterative data clean-
ing procedure converges relatively fast in our experiment. In most of our experiments, the
data cleaning procedure converges only after three iterations with almost noise free results.
The restoration algorithm based on the 1 -bust estimation algorithm has many advantages
over the traditional methods such as median filter or a-trimmed mean filter. The comparison
with other methods will be discussed later.
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B. Intensity Representation for Restoration

The objective of the restoration problem is to estimate the original image intensity y(i,j)
from the given sequence of x(i,j). We will fit a causal autoregressive model for the original
(noise free) image y(-).

Let (i,j) be an index for the coordinate location and y(i,j) be the intensity at the location
(ij). Then the three neighbor causal autoregressive model is represented by the following
equation:

y(i.j) = 0T z(i,j) + §(i.) (29)

where O is a parameter vector, {{(i,j)} is a two dimensional white noise sequence with
outliers as in (28), and z(i,j) is a vector consisting of intensities of three causal neighbors and
unity. The last element of the vector z(i,j) is used to represent constant grey level in the
image.

y(i,j-1)
Y(l-l sj)
yG-1,j-1)
1

z(i,j) = (30)

It is assumed that every pixel has all of its neighbors, i.e., for each pixel at (i,j), pixels at (i,j-
1), (i-1y) and (i-1,j-1) are available.

We assume that the observation x(i,j) of the process y(i,j) is corrupted by noise &(i, j).
It is given by the following equation:

x(1,j) = y(i,j) + §(1.j) - (31

The noise process & is assumed to contain outliers.

C. Image Restoration Algorithm

The purpose of image restoration is to remove noise, including impulse noise, from the
image. The image degradation process can be represented by the following equation:

x(1,j) = y(i.j) + &(.J)

where x is the observation, y is the original image intensity, and & is the noise process with
outlier. Image restoration involves estimation of the original intensity y from the observa-
tion x. For a small sized image, original image intensity can be modelled by a causal autore-
gressive model. If the original image intensity indeed obeys a causal autoregressive model,
then the original image intensity can be recovered by the robust estimation algorithm for the
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noisy observation case (Eom, Kashyap, 1988). The data cleaning procedure removes outliers
at each iteration without degradinz the original signal.

The restoration method based on the robust image model has an advantage over con-
ventional methods such as median filter or a-trimmed mean filter. The robust image model-
based method does not blur images after restoration. Conventional methods, such as median
filter or a-trimmed mean filter, replace every pixel by its location estimates. Because these
methods are based on the constant intensity assumption, the details of the original image are
significantly blurred.

This procedure at each iteration is described in the following block diagram (Figure 5)
and the algorithm is also summarized below.

Image Restoration Algorithm

1. Divide the image into small sized (8x8) windows. The following procedures in steps
2-6 are applied for each window.

2. Let {x(i,j)) represent the given noisy data in the window and {y¥(i,j)} represent the
cleaned data at the k-th iteration. Initially, y¥(i,j) = x(,j) for all (i,j). Compute initial
estimators 8@ and 6(? by the least squares method.

69 = (327G )z @) ZZ0 @)y O @il (32
1) ihj
and
6O = L5 [yOG,j) - 607 20, 12 (33)

where m and n are row and column dimensions of the image and z®¥(i,j) is the follow-
ing state vector.

x®(1,j-1)
x®(i-1,j)
x® (i-1,j~1)
1

2®(,j) = (34)

3. Consider k-th iteration, k>0. Compute residuals ®q, j) and modified residuals f(k)(i. j)
by the following formula with the estimated parameters computed in step 2 for all pix-
els in the window.

X, j) = y® i, j) - 8% 20, j) (35)
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where y is a bounded and continuous functions as discussed in Section III (e.g.,
Hampel’s redescending y-function).

4. Restore image by the following rule (data cleaning)

y®&G,j) = 8% 20 j) +i% ) 37)

S. Update estimators of parameter 8 and scale parameter o? by the following formula.

8%+D = 0 + (320, 2™ (1, NI (Z2® G, G.)] (38)

i ij

and

o™ = 556 P (39)
i.j

L
mn *

6. Repeat steps 3-5 until the difference between estimates in successive iterations becomes
small.

The properties of the algorithm are discussed in (Eom and Kashyap, 1988).

Iterate
F--"-"-—"=-—"=-"=-"=-"="==== - A
| |
I
| |
: (k) b(k) > (k) : (k+1)
- r y
4y . Pal:ame.ter (k) Con.lpute o Data ' .
Estimation o .| Residual Cleaning
Figure S. Block diagram of image restoration method at each iteration. “‘) and y®+»

are cleaned data at k-th and (k+1)-th iterations, respectively, 6 ) and 6® are
parameter estimates obtained by algorithm 1, and r® is the residual.
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D. Experimental Results

The restoration algorithm based on the robust modelling approach is applied to five dif-
ferent pictures as shown in Figure 6. Figure 6.a is a 256x256 picture of a bridge. Figure 6.b
is a 256x256 picture of the face of a monkey. Figure 6.c is a 256x256 picture of a girl. Fig-
ure 6.d is a 256x256 picture of an outdoor scene. Figure 6.e is a 512x512 aerial picture of
Purdue University campus. All of these pictures are digitized into 256 grey levels. To meas-
ure the performance of different algorithms on the noisy pictures, contaminated images are
constructed by adding both Gaussian (0,100) noise and 5% of impulse noise to the originals
given in Figure 6. The generated impulse noise has only 2 grey levels, O (black) and 255
(white), both with the same probability. In the robust model-based algorithm, Hampel’s -
function is used in all experiments. Experiments are designed to clarify three different
aspects of the restoration process. First, the convergence of the restoration algorithm is
shown with these noisy pictures and the rate of convergence is measured experimentally.
Second, the mean square error of three different restoration algorithms, namely, model-based
algorithm, median filter, and a-trimmed mean filter, are compared for different window sizes
and different images. Third, the overall performance of three different restoration algorithms
are compared qualitatively for different noisy images.

Convergence of Image Restoration Algorithm

The robust model-based restoration algorithm is applied to the contaminated images.
Mean square error of the cleaned image is computed at each iteration.

Figures 7.a, 7.b, and 7.c are plots of mean square errors versus the number of iterations
for the outdoor scene (Figure 6.d), the girl’s image (Figure 6.c) and the bridge scene (Figure
6.a), respectively. Contaminated pictures are made by adding Gaussian (0,100) noise and
5% of impulse noise to the images in Figure 6. Initial mean square errors in all cases are very
large because of the additive noise, but they decrease considerably fast in the first two itera-
tions. The mean square error stabilizes in less than three iterations. The convergence of the
data cleaning method is also fast (less than three iterations).

Mean Square Error Comparison of Image Restoration Methods

Four different types of image restoration methods with different sizes of windows, 3x3,
5x5, and 7x7, are used in this experiment. These are the mean filter, median filter, a-
trimmed mean filter with the wrimming ratio @=0.15, and the robust model-based method.
Note that the popular choice of a is in the range from 0.1 to 0.15, and the method performed
best with choice a=0.15 in our experiment. In the case of robust model-based method, the
fixed window size of 8x8 is used. The choice of 8x8 is from convenience and a small change
of window size would not adversely affect the performance, because the fitted image model
will not change significantly.

Four contaminated images are obtained from the originals in Figure 6 by the same pro-
cedure explained in the above section. Different restoration methods which we discussed in
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the above are applied to these contaminated images, and mean square error of restored
images are computed. In the case of median filter, mean filter, and a-trimmed mean filter,
the mean square error is computed for different window sizes, but in the case of robust
model-based method, the plotted mean square error is for the fixed window size 8x8. The
computed mean square error is plotted with respect to window size.

Figures 8.a, 8.b, 8.c, 8.d are plots of mean square error computed by different methods
for the originals of the outdoor scene (Figure 6.d), girl’s images (Figures 6.c), bridge scene
(Figure 6.a), and aerial picture of Purdue University campus (Figure 6.e), respectively. The
results are consistent for all different types of images. All traditional methods result in rela-
tively large values of mean square error on most of images, especially on the images having
many edges. For example, in the outdoor scene, minimum values of mean square error of
mean filter, median filter, and &-trimmed mean filter are 690.1441, 651.1638, and 220.2222,
respectively. In contrast, the mean square error of the robust model-based method is
103.9669. The difference, which is significant, corresponds to the fact that the intensity in a
window cannot be approximated by a constant because of the edges and corners. Traditional
methods have small values of mean square error at window sizes 3x3 or 5x5 depending on
the types of images. Mean filter performs worst on all images tested, as expected, and
median filter has slightly lower mean square error than that of mean filter. o-trimmed mean
filter performs better than median filter or mean filter but its mean square error is always
larger than that of robust model-based method on all images tested. The mean square error
comparison shows that the robust model-based method performs better than any other con-
ventional methods on tested images. The minimum values of mean square error in conven-
tional methods are 220.2222 for outdoor scene, 80.6720 for girl, 92.1115 for bridge, and
253.7658 for Purdue campus, respectively. Mean square errors of our approach are 103.9669
for outdoor scene, 52.5648 for girl, 47.3367 for bridge, and 189.1443 for Purdue campus.
The level of mean square error of conventional methods are always higher than that of robust
model-based method. The detailed comparison is summarized in Table III.

Table III. Mean square error comparison of different restoration methods on four
different types of images.

MSE of MSE of MSE of MSE of

Image robust model method | mean filter | median filter | a-TM fiiter
Outdoor 103.9669 690.1441 651.1638 220.2222
Girl 52.5648 3189122 300.3172 80.6720
Bridge 47.3367 264.6290 216.3370 92.1115
Campus 189.1433 453.9291 401.6255 253.7658

45




Qualitative Comparison of Image Restoration Methods

The noisy images and images restored by different restoration algorithms are shown in
Figures 9-10. Figures 9-10 are results on the originals of Figure 6.a-b in the same order. The
upper left corner of the each picture of Figures 9-10 is the noisy picture contaminated by
noise and is generated by adding white Gaussian (0,100) noise and 5% of impulse noise to
the original. This image shows a typical salt-and-pepper noise pattern as well as Gaussian
noise degradation. This noisy picture is used to obtain restored images by different methods.

The upper right comer of each picture in Figures 9-10 is the restored image by robust
model-based method. This image is obtained after three iterations of data cleaning process.
The impulsive noise is almost completely absent and residual Gaussian noise is hardly
noticeable. The fine details of the restored image are well preserved. As a matter of fact,
almost all details of the original in Figure 6 are still well shown in this picture. For example,
guy wire of the bridge (Figure 9), hair of the monkey’s face (Figure 10), etc., have sharp
edges as in the original. This result shows the important ability of the image model-based
approach: it can preserve the edges and corners even with superior performance of noise
removal.

The lower left corner of each picture of Figures 9-10 is the image restored by median
filter with a 5x5 window. Note that the 5x5 window gives lowest mean square error as well
as the 3x3 window in the experiment of the former section. Most of the impulse noise are
removed in this picture, but it is much more blurred than the result of robust model-based
method. This blurring effect can be more easily observed in the images with many edges
and corners than in the images with large areas with constant grey levels. Guy wire and
details of the bridge frame (Figure 9) and hairs and eyes of monkey’s face (Figure 10) are
blurred and cannot be observed in these median filtered images. The regions with small
intensity variations are replaced by constant grey level and the transitions between different
regions are rather abrupt. This effect is typical in the median filter, and it is because the
median filter fails in smoothing images. These effects can be observed in the tower region of
the bridge (Figure 9).

The lower right corner of each picture of Figures 9-10 is the image restored by «-
trimmed mean filter with a 5x5 window and a=0.15. Note that the choice of a=0.15 is con-
sidered a good choice in previous studies (Rey, 1983; Bickel, 1977). Even though the a-
trimmed mean filter has lower mean square error than the median filter, the image restored
by the a-trimmed mean filter is more blurred than the median filter. Edges and corners of
the image convey more information to human perception and because of this, the image
restored by a-trimmed mean filter is worse than median filter in the visual comparison even
though it has smaller mean square error. For example, tower and guy wire in the bridge (Fig-
ure 9) and hairs and eyes of monkey’s face (Figure 10) are blurred. It is also not successful
in removing impulse noise and has considerable residual noise caused by impulse noise.
These residual noise can be observed in all images (Figures 9-10).




Figure 6. Originals
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Figure 8. Mean square error comparisons of different methods. (a) The outdoor scene.

(b) The image of a Girl. (c) The Bridge scene. (d) Purdue campus scene.
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Figure 9. Qualitative comparison for Bridge picture. Most of details, such as guy wire,
are clearly shown in the result of model-based approach, but are not clear in
others. (a) Comtaminated image. (b) Robust model approach. (c) Median
filter. (d) a-trimmed mean filter.
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Figure 10.

Qualitative comparison for Monkey picture. Most of details, such as hair,
eyes, etc., are clearly shown in the result of model-based approach, but are
not clear in others. (a) Comtaminated image. (b) Robust model approach. (c)
Median filter. (d) a-trimmed mean filter.
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V. COMPOSITE EDGE DETECTION.

A. Introduction

Edge detection is not only an important topic in image processing in its own right, but
also as a tool for the important problem of image segmentation. The traditional methods of
edge detection based on the windows of Robert, Prewitt or Sobel (Rosenfeld and Kak, 1982)
are based on the fact that there is a sharp change in the intensity on either side of an edge
pixel. We can call these types of edges as step edges. Instead of using the step function, we
can employ other types of functions like the roof function (Brady, 1982) to characterize the
local intensity behavior near the edge. In recent times there have been attempts at character-
izing and detecting edges by considering the intensity density over a broad area around the
edge pixels. Examples of these methods are the Laplacian on Gaussian operator (Marr and
Hildreth, 1980), or difference of Gaussians (DOG) (Wilson and Bergen, 1979), the facet
model-based methods (Haralick, 1984), and the causal autoregressive model-based methods
(Zhou and Chellappa, 1986).

However, there is another mechanism of creation of an edge which has recently
received some attention. Consider the pixels which are at the boundary of two textures, say
cotton canvas and raffia. There is no sharp intensity change at the boundary, yet everyone
will perceive the existence of a sharp edge at the boundary of the two textures. We can
characterize these edge pixels as texture edges. Recently there has been considerable interest
in developing methods which can detect all the texture boundaries in a scene involving
several textures (Kashyap and Eom, 1985a). These algorithms effectively locate most of the
boundaries between the textures which are perceived by a human observer. Of course, any
real life images such as an outdoor scene or airport scene will have both intensity edges and
texture edges.

When we apply the methods mentioned earlier for detecting edges on outdoor scenes,
the final result is not satisfactory for several reasons. For instance, the result given by the
Laplacian on Gaussian approach or the facet model approach yields a lot of micro edges
corresponding to the leaves of a tree or the inside of a shrub in the house image. These
micro edges do not convey much information and only add to the confusion. Even the edges
due to runways or highways are often smeared. The texture boundaries are never sharply
delineated. These methods cannot distinguish between the edges within a texture like the
wood texture and the boundary between the two textures, say wood and cork.

The texture based algorithms also have their limitations. Since the size of the windows
or masks needed to detect or discriminate between textures is much bigger than that used in
the other methods, sharp edges like highways or runways in the airport are missed by these
images.

The purpose of this section is to develop a composite edge detection approach which
can detect all types of edges including intensity edges and texture edges. We employ a two
stage approach. In the first stage, we use an algorithm which determines all the possible
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pixels in an image which are potential edges (either intensity edge or texture edge). In addi-
tion, the algorithm gives the direction of the potential edge. In the second stage, we submit
each candidate edge pixel to two procedures, one of which is designed to test whether the
candidate edge pixel is a texture edge or not, and the other is designed to test whether the
candidate edge is an intensity edge. We accept only those edges which pass at least one of
the two tests. The procedure for testing for the texture edge is a likelihood approach based
on a causal autoregressive model. The procedure for testing for a step edge is fairly conven-
tional.

The comprehensive algorithm (Eom, Kashyap, 1987, 1989a, 1989b) presented here was
applied to several images, both synthetic as well as real life images. The synthetic images
are checkerboard images involving two different textures alternately. Each texture has its
own internal structure. The other two images are the outdoor scene and the airport image.
We give the results of our algorithm. To bring out the highlights of our approach, we also
give the results of the two popular edge detection approaches in recent literature, namely the
Laplacian on Gaussian method and the facet model approach, for all four images. The
overall approach is given in Figure 11.

!

Texture Edge
Test
Original | _I Edge Hypothesis Potential gler;g:ted
Image Generation Edges Edges
Intensity
Edge Test

}

Figure 11. Block diagram of the composite edge detection algorithm

B. Edge Hypothesis Generation (Algorithm 1)

As indicated in Figure 11, the first step in the composite edge detection algorithm is
identifying all pixels which are potential edge pixels. In this process, all potential edge pix-
els should be detected whether they are step edges, roof edges, or texture edges. Intensity
edges, such as step edges or roof edges have abrupt changes of intensity at the edge pixels
and these can be detected by a derivative operator. Intensity transition is also involved at the
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texture boundary as well as at microedges inside of each texture and it can be detected by a
derivative operator. The algorithm used here is based on directional derivatives. We use
3x3 masks so that the edge pixels deleted here are relatively sharp. Large mask operators are
not adequate because they yield potential edge pixels which are situated away from the
actual or true edge pixels.

Let g(x,y) be the image intensity at position (x,y). The first order directional derivative
is given by the following equation.

g—g gi —coso + 35 sino. 40)
where gg and gg are partial derivatives of g in x and y directions and can be obtained by
convolving with the following differencing operators D and Dy,.

1 -101 1 -1 -1 -1
Dx=§'—101 Dy=? 0 0 0 (41)

-101 1 1 1

ie.,
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The angle of gradient direction is
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Likewise, the second order directional derivative is given by the following.
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An edge hypothesis is made at the pixel whose first directional derivative has a magni-
tude larger than a threshold t; and the corresponding second order directional derivative is
negative, i.c.,

2
Ia—§|>t1, and 98 <0 47)

Note that the Prewitt operator is a special case of this directional derivatives method and the
Prewitt operator does not involve second order directional derivatives.

ag/dy
dg/ox
between 0 to 360 degrees. The angle of edge direction is quantized into 4 directions as
defined in Table IV so that a horizontal or vertical directional strips can be applied. Around
each potential edge pixel, a mx2n strip (5x16 is used in this experiment) is constructed so
that the strip is perpendicular to the approximated edge direction (Figure 12). For each
potential edge pixel at the center of the strip, the following null hypothesis Hy is assigned.

The angle of the first derivative is given by a = tan™!( ), and it can be any value

Hp = An edge exists in the given direction

The above hypothesis is tested by applying decision rules to the image strip. The details of
the tests are given later.
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Table IV. Quantization rule for estimated edge direction

gradient angle(degrees) | approximated direction | type of strip
315-45 0 horizontal

45-135 2 vertical
135-225 4 horizontal

225 - 315 6 vertical

potential edge pixel
a n estimated
/\/\/\} — I edge direction

|
" { f, * ,

» estimated
gradient direction

Figure 12. m x 2n strip of image with potential edge pixel at center

C. Confirming the Presence of Edges (Algorithm 2)

The potential edge pixels selected by the edge hypothesis generation process given in
Section V.B are not the final edge pixels. Each potential edge can be either an intensity
edge, a texture edge, or a spurious edge (micro-edge) caused by intensity changes inside of a
texture. We want to detect only valid edges such as intensity edges or texture edges, but
microedges (spurious edges) need be deleted from the potential edge map. We need to
confirm valid edges at each potential edge pixel. This confirmation process involves two dif-
ferent types of confirmation processes. Intensity edges and texture edges have different gen-
eration mechanisms, and these need to be confirmed by separate decision processes.

Therefore, two different types of decision rules are needed to detect both texture edges
and intensity edges. The first decision rule tests the existence of a texture edge at the given
position and edge direction, and it is based on the likelihood ratio test with statistical texture
modelling method. The second decision rule tests the existence of an intensity edge, and it is
based on the differencing operator with weighted differencing. The pixels which fail in both
of these tests will be deleted from the final edge mzp.

56




1. Confirming a Texture Edge

A texture edge in an image can be modelled as a boundary between two different tex-
ture regions. This is analogous to the intensity edge which is modelled by a boundary
between two different grey levels. Detection of a texture edge is much more difficult than
detection of intensity edges, because each texture region contains many microedges. The
texture edges cannot be detected by the strength of gradient or Laplacian operators, and we
need a method to characterize textures before detecting texture edges. Textures can be
characterized by a small number of parameters after fitting the image by an image model
such as causal autoregressive model.

Consider a horizontal strip of an image intensity array which is sufficiently small, so
that the strip can have at most two different textures. If it has two textures, the boundary
between textures can be assumed as vertical. In this strip, a texture edge is defined as the
boundary between two different textures.

Consider the strip around the candidate pixe! defined earlier. Let the null and alterna-
tive hypothesis be

H, = texture edge exists at the given pixel and direction
H; = no texture edge exists at the given pixel and direction.

Under the hypothesis Hy, texture in the left of the potential edge (this region will be
called Q;) and texture in the right of the potential edge (this region will be called ;) are
different from each other. These two different textures are modeled by causal autoregressive
models. The models in the regions Q; and Q; are defined below.

g(i.j) = 87 z(i,j) + \/p1 @(i,j), if O<ism,0<j<n (region Q;) (48)

g(i,j) = 07 2(i,j) + \[p2 @(i,j), if 0<i<m,n<j<2n (region Q) (49)

where {w(i.j)} is a standard 2D white noise sequence, 8; and 6, are parameter vectors for
the regions 2; and Q,, respectively, and z(i,j) is a 4-vector.

g(i,j-1)
gi-1)
g(i-1,j-1)
1

z(1,)) =

The parameters of the autoregressive model in the 2 regions Q; and 2; will be different
under the null hypothesis Hy.

On the other hand, under the hypothesis H;, the strip has only one type of texture,
which is also assumed to follow a causal autoregressive model.
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g(,j) = 882G, j) + \po w(,j), if 0<ism,0sj<2n (region Q, ;) (50)
where 6 is the parameter vector and z(i,]) is previously defined.

The decision rule based on the likelihood ratio test has the following form:
accept Hy if logp(g|Ho)-logp(g|Hy) 2K .
reject Ho if logp(g|Ho)-logp(g|Hy) <K )

where K is a constant. The likelihood functions logp(g|Hp) and logp(g|H,) for autoregres-
sive model are given in (Kashyap, Eom, 1988; Eom, Kashyap, 1989b). The proof can be
found in the reference (Kashyap, 1982).

The texture edge detection by applying the decision rule (*) on the pixels with edge
hypothesis has several advantages over the texture boundary detection algorithms given in
(Kashyap, 1985a). First, the texture edge direction is estimated in new method, and this
gives more accuracy in detecting edges than applying both horizontal and vertical strips.
Second, the new method tests only the existence of a texture edge, and it provides much fas-
ter processing.

2. Confirming an Intensity Edge

This decision rule tests the existence of an intensity edge at the pixel having edge
hypothesis. The intensity edge is modeled by a step edge and the decision is made on the
output of the differencing operator with weighted averaging. Briefly speaking, with the strip
applied at the given pixel, the difference of the weighted average of grey levels in both sides
from the potential edge pixel is computed. If this difference exceeds a threshold, the pixel is
accepted. This decision rule also can be extended to detect the local maximum instead of
detecting the strength of the weighted differencing operator output. Let W(i,j) be a weight
function. This weight function should be asymmetric with respect to the hypothetical edge
pixel and direction. Then the output of the weighted differencing operator is given by the
following equation.

' m2n
g = XX WG.jedj) (3]

i=0j=0
All edge detection window operators can be considered as a member of this weighted dif-
ferencing operators. For example, Prewitt, Robert and Sobel operators (Rosenfeld and Kak,
1982) are weighted differencing operators with appropriate weight functions detecting large
output as edges, Laplacian on Gaussian (Marr and Hildreth, 1980) operator is also a
weighted differencing operator with a derivative of Gaussian weight function detecting local
maximum of output. Many variations of weight functions are possible, but we will restrict
our attention to the simple operator which can detect the step edges. Probably the simplest
weighted differencing operator is the one with uniform weight function. This operator is
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defined for the given strip as follows.

.. [1 ifosjsn
w("’)'{—l ifn<j<2n (52)

The above operator is used to decide the existence of an intensity edge at the potential edge
pixel in our experiment. The decision is based on the strength of the operator output, i.e.,

{ accept edge if § >t (53)

rejectedge  otherwise

where t is a constant.

Experimental results (Figures 13-15) show good performance with this simple decision
rule. :

D. Experimental Results

The composite edge detection algorithm is tested with the following four different
images (Figure 13). Figure 13.a is a 128x128 image generated from two textures chosen
from Brodatz’s photo album (Brodatz, 1966), grass and wood grain textures. This image has
only major edges at the boundary of two textures but each square has many weak edges
caused by textures.

Figure 13.b is a 128x128 original test image generated by rotating a checker board
image generated similarly as Figure 13.a. Textures in this image are the same as in Figure
13.a. The major edges of this image are sloped in a 45-degree direction and each diamond
pattern has many weak edges caused by intensity changes within a texture. This image is
given to demonstrate that our method can detect edges which are neither horizontal nor verti-
cal. Figure 13.c is a 256x256 monkey image.

Experiment 1: Checker Board Image

Figure 14.a is the final result. of composite edge detection algorithm with a low thres-
hold in the decision rule for the intensity edge. It shows the detected major edges at the
boundary of two different textures as well as weak edges inside of each texture. The edges
detected inside of textures are close to the actual edge locations. Figure 14.b is the result of
composite edge detection algorithm with a high threshold in the decision rule for the inten-
sity edge. It shows only major edges between two differeut textures and most of the weak
edges inside the textures are eliminated. Thus an investigator can get an idea of the texture
edges (corresponding to the boundaries between textures) and the intensity edges separately.

Figure 14.c is the result of Laplacian on Gaussian approach with 6 =0.5. Even if we
alter the parameters, the final edge map is still similar to the one before. Thus, if we use this
approach, we cannot distinguish the edges which are caused by the boundaries of textures
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and the microedges within each texture.

Figure 14.d is a result of facet model approach. It shows detected major edges and weak
edges. Even if the parameters are changed, the final edge map is similar to the Figure 14.d.
Thus if we use this approach, the texture edges and intensity edges are not distinguished.
Another noticeable distortion is at the corner of the square. The detected edges around the
corner are distorted.

Experiment 2: Rotated Checker Board Image

Figure 15.a is the final result of composite edge detection algorithm with a low thres-
hold in the decision rule for the intensity edge. It shows all major edges between texture
regions and weak edges inside of each texture region. The location of detected edges
correspond to actual edge locations of the original image. Figure 15.b is the final result of
composite edge detection algorithm with a high threshold in the decision rule for the inten-
sity edge. It shows all major edges between different texture regions, but most of the weak
edges inside of a texture region are removed without weakening major edges.

Figure 15.c is the result of Laplacian on Gaussian operator. It shows both major edges
and weak edges. The final edge map does not change even if the parameters are changed.
Therefore if we use this approach, texture edges and intensity edges are not distinguished.
Figure 15.d is the result of facet model approach. It shows severely distorted detected edges.
It contains major edges between texture regions and weak edges inside of each texture
region, but weak edges cannot be separated from the major edges by changing parameters.

Experiment 3: Monkey Image

Figure 16.a is the image of pixels having edge hypothesis which is obtained by the edge
hypothesis generation process which is described in Section V.B. It shows sharp edges, and
the location of these potential edge pixels are very close to actual edge location. For exam-
ple, eyes of the monkey, lines in the center of the image, etc., are well detected and show
good performance of this algorithm as an edge detection method. The performance as an
edge detection method is superior than other edge detection methods.

Figure 16.b is the final result of the composite edge detection algorithm. Notice that
most of microedges in the texture region in the cheeks of the monkey’s face are removed, but
most of important edges, such as eyes and nose of the monkey, lines in the center of the pic-
ture, are well preserved.

Figure 16.c is the result of Laplacian on Gaussian operator. It shows distorted major
edges, and many unwanted edges caused by textures in the cheeks of the monkey’s face.
This picture not only includes many unwanted microedges but also shows distorted major
edges. The edges in the eyes and nose region are distorted and barely distinguishable.

Figure 16.d is the result of facet model approach. Detected edges are distorted and con-
tain many false (spurious) edges. The location of detected edges are relatively far from the




actual edge location.

E. Discussions and Conclusions

Edges are generated in at least two different ways, namely by the difference in intensity
(intensity edge) and by the difference in textures (texture edge). The importance of the tex-
ture edge is demonstrated by the examples. Conventional edge detection algorithms cannot
distinguish between texture edges and intensity edges. A new edge detection algorithm
which can detect both intensity and texture edges is developed.

The performance of the composite edge detection algorithm shown in this experiment
can be summarized into the following two points.

1. Edge hypothesis generation procedure developed in this research can be used as an edge
detection method, and the performance as an edge detection algorithm is better than
other edge detection methods.

2. Our composite edge detection algorithm is flexible enough to detect both major and
weak edges by changing threshold. In other words, it can detect only major edges
without detecting microedges which are caused by texture for high threshold and can
detect both major edges and microedges for lower threshold.
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Figure 13. Original images, (a) checker board, (b) rotated checker board, (c¢) outdoor
scene, (d) monkey
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Figure 14.

(d)

Comparison with checker board image, (a) edges detected by composite edge
detection algorithm with low threshold, (b) edges detected by composite edge
detection algorithm with high threshold, (c) result of Laplacian on Gaussian
method, (d) result of facet model method




Figure 15.

Comparison with rotated checker board image, (a) edges detected by compo-
site edge detection algorithm with low threshold, (b) edges detecied by com-
posite edge detection algorithm with high threshold, (c) result of Laplacian on
Gaussian method, (d) result of facet model method
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Figure 16.

Comparison with monkey image, (a) potential edges (pixels having edge
hypothesis) detected by algorithm 1, (b) composite edges detected by algo-
rithm 2 (composite edge detection algorithm), () result of Laplacian on Gaus-
sian method, (d) result of facet model method
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VI. SUMMARY AND CONCLUSIONS. Robust image models are investigated, and
applied to several important image processing problems in this study. Robust image models
have potential applications in many problems arising in image processing and computer
vision. Image models are already used in image synthesis, texture analysis, image coding,
and image segmentation, but they are generally nonrobust to outliers. We applied the robust
image models to two important problems in image processing, namely image restoraton and
edge detection. The robust model-based methods are compared experimentally with conven-
tional methods. The advantage of robust model-based methods over conventional methods
in some of image processing problems has been shown in Sections IV and V.
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ON THE STROH FORMALISM FOR ANISOTROPIC ELASTICITY
AND ITS APPLICATIONS TO COMPOSITES

T.C. T. Ting
Department of Civil Engineering,
Mechanics and Metallurgy
University of Illinois at Chicago
Chicago, IL 60680

ABSTRACT. The Stroh formalism for anisotropic elastic materials has contributed
1auch to the determination of solutions of anisotropic elasticity problems. In most cases,
however, the solutions are in a complex form and it is desirable to have the solutions in a
real form for practical applications. This requires new identities or sum rules which relate
eigenvalues and eigenvectors of anisotropic elastic constants to real quantities. The identi-
ties serve two important purposes. Firstly, with the identities the problem of repeated
eigenvalues disappears. Secondly, the identities enable us to express the final solutions to
anisotropic elasticity problems in a real form. The identities and the structural property of
certain real matrices in the solution are the keys in solving heretofore unsolved problems
and in simplifying existing complex solutions to a real form solution. As a result, some
interesting phenomena unnoticed before have been revealed. For instance, it was discov-
ered only recently that the surface traction on any radial plane in the anisotropic elastic
material due to a concentrated force and a line dislocation applied at the origin is indepen-
dent of the choice of the radial plane.

INTRODUCTION. Following the work of Eshelby, et al. [1], Stroh in 1958 &2] and
1962 {3] developed a powerful and elegant formalism for treating a certain class ot two—
dimensional problems involving dislocations, line forces and steady state waves in aniso-
tropic elastic solids. The formalism is well-known in the physics and materials science
community (see [4-10|, for example). Unlike the two—dimensional anisotropic solutions
developed by Green and Zerna [11] which are restricted to plane strain deformations and
hence to monoclinic materials, the Stroh formalism applies to general anisotropic elastic
materials for which all three displacement components are necessarily coupled. Also,
unlike the Lekhnitskii’s formalism (12| which breaks down for orthotropic materials {13]
and requires a special treatment [14], the Stroh formalism has no restrictions. An excellent
review on the Stroh formalism can be found in [8].

The basic elements of Stroh formalism are the eigenvalue p and the eigenvectors

of anisotropic elastic constants. The solution to an anisotropic elasticity problem is, in
general, expressed in terms of p's and ¢'s which are complex. There are identities or
sum rules which express certain combinations of p's and {'s in terms of real matrices
Ni’ i=1,2,3, S, H and L to be defined later. The identities enable us to rewrite the com-

plex solutions into a real form. The structures of N : S, H, L tell us in depth information
on the physical property of the final solution.

We outline in Section 2 Stroh formalism. The eigenvaiues p and eigenvectors ¢

are defined. Problems arise when p has a repeated root and the modifications required
are given in Section 3. The orthogonality relations between the eigenvectors are presented
in Section 4. Basic identities between p, { and the real matrices S, H, L are derived. In
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Section 5, an alternative expression for S, H, L due to Barnett and Lothe is presented.

Also presented are the structure of S, H, L and Nl’ N3. In the last section, we show new
identities which are useful in solving certain problems in anisotropic elastic materials and
composites.

STROH FORMALISM. In a fixed rectangular coordinate system X, 1=1,2,3, let
u, and 4t be the displacement of a particle and the stress, respectively. The equations of
equilibrium and stress—strain laws can be written as

(1)
(2)

ag.. - =O)
15,

1

%5 = Cijks%k,s -

in which repeated indices imply summation, a comma stands for partial differentiation and
Cijk ¢ are the elastic constants which possess the normal symmetry property

C C C

ijks ~ “jiks ~ “ksij"

Consider a two—dimensional deformation in which up, k=1,2,3, depend on X, and Xq
only. The general solution has the form

(3) u = akf(z) ,
(4) 2= %) +Ppxy,

where f is an arbitrary function of z and p, a, are constants. In matrix notation, they
are determined by

(s {o+pr+rT +pTfa=0,

in which the superscript T stands for the transpose and

Qik = Ci1k1 ,
(6) 1 Rik = Cirka »
| Tix = Cioga -

Equation (5) is obtained by substituting (3) into (2) and (1). We note that Q and T are
symmetric and, subject to positiveness of strain energy, positive definite.




Introducing the new vector
_ T 1,
) b=(R" +pT)a=-2(Q+pR)j,

in which the second equality comes from (5), the stress obtained by substituting (3) into
(2) can be written as

(8) 7= bos =i, §=10lz)

~

Thus ¢ is the stress function.

The two equations in (7) can be rewritten in the following standard eigenrelation

(9) N¢ = p¢

N N a
ltI: -1 -2 , {: - ,
Ng Ny ’ b
-1,T I R
(10) 1y, =-T'R", Ng =T =X5,
X - RTIRT - =]

We see that N, and N3 are symmetric and N 5 is positive definite. It is shown in [15]
that —N3 is positive semi—definite. Equation (9) provides six eigenvalues P, a=1,2,..6,
and six associated eigenvectors ¢ . Since p, ¢annot be real if the strain energy is positive
[1], we let

pa-+-3={3c1’ Impa>0,

§Q+3=§a' 0-——1,2,3,

where an overbar denotes the complex conjugate and Im stands for the imaginary part.
The general solution for the displacement and stress function given by (3) and (8) can be
written as

3
u= 2 +3,6,05(E,)

Q=Z z +bafa+3( )
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z, = X4 +pax2,

where fl’f2""'f6 are arbitrary complex functions of their arguments.

For u and Q to be real, we let

f =1 a=12.3,

a+3 a’

and write the general solution as

3 T
u=2 Re { 2 a}afa(za)v ,
. a=1 E

(11) <
- ‘
¢ =2Req b f (2 )t
| L a=1
or
3
(12) w = 2Re 2 £f(z,)0
a=1
v a
w = h ) f —v - )
~ ~a
/ b,

where Re stands for the real part. We observe that w satisfies the differential equation

(8]

Y3=Nﬂy

DEGENERATE MATERIALS. Equations (11) or (12) are complete when the 6x6
matrix N in (9) is simple, i.e., when the eigenvalues P, of N are distinct. It remains

complete when N 1s semisimple, 1.e., when P, have a repeated eigenvalue and the asso-
ciated eigenvectors are independent. If N is non—semisimple, i.e., if P, have a repeated
eigenvalue but the eigenvectors o are not all independent, the solution given by (12) is
not complete. Anisotropic elastic materials for which N is non—semisimple are called

degenerate materials. Isotropic materials are a special class of degenerate materials. For
isotropic materials, we have P} =Py = 1 and §1 = {,. In fact, Py = 1 also but §3 $ {1.

For degenerate materials for which {, = {,, (12) is replaced by [16,17|

w=2Re {é‘lfl(zl) ¥ (i fy(z,) + §3f3(z3)} ,

7¢




in which {1 satisfies the following equation which is obtained by differentiating (9) with
respect to p and setting p = Py

N =pbi+ 4

~ o~

We see that the solution for degenerate materials destroys the regular expression of the
solution given by (12) for general anisotropic materials. This happens not only for the
eneral solution, it also occurs in applications in which the final solution has a nice simple

orm for general anisotropic materials but has a complicated expression for degenerate
materials.

It is desirable, therefore, to have an expression which holds regardless of whether
the material is degenerate or not. This means that we need the solution in a form which
does not contain the eigenvalues p and the eigenvectors { of the 6x6 matrix N. We

could achieve this if we have identities which relate p and ¢ to real quantities repre-

sented by N, or by quantities derivable from N. This is the main subject in the follow-
ing sections.

THE ORTHOGONALITY RELATIONS. The left eigenvectors 7 of N is

. 7
7N=py

~

or
T
(13) N p=pp.
The left eigenvectors 7 and the right eigenvectors { associated with different eigenvalues

p are biorthogonal to each other [18]. If N is simple, we can normalize the eigenvectors
such that

T
(14) NIRENT

where 60 4 is the Kronecker delta. If N is semisimple, (14) remains valid because it is

possible to choose the eigenvectors associated with the repeated eigenvalue in such a way
that (14) holds. If N is non—semisimple, (14) is not valid for the repeated eigenvalue. A

modified relation can be found in [8]. If we introduce the 6x6 matrices U and V by

U= [{1:{gdl

V= 1{nm976]

(14) can be written as

viu=1,
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where I is the 6x6 identity matrix. This implies VT and U are inverse of each other
and hence the product commutes, i.e.,

(15) uvl=1.

Denoting the 6x6 matrix J by

]

[ in this context being the 3x3 identity matrix, it can be shown that

t— 10O
1O -

N = ()" =Ny
It follows from (9) and (13) that we may set without loss of generality,

)
(16) 7=1¢

If we define the 3x3 matrices A and B by

A =[a),3924],
B= [?1@2'93] J
we have
A A
u=|" -|, Vv=JU.
V B B v=2Jv

Equation (15) leads to, after carrying out the matrix multiplications,

T

(17) AAT + BAT =0 =BBT +

(Mool
(Wesll

(18) ABT + BT =1=BAT + BAT.

YO
' 3

—

Equations (17) imply that é.éT and BB

are purely imaginary while (18) tells us that

the real part of él}T is 1/2. Hence we let




s =i(248" - 1),

2iaAT = ®T

—
—
[{=]

~—

e
i

L o
i

~2iBBT = LT

where S, H, L are 3x3 real matrices first introduced by Barnett and Lothe [6]. H and L

are symmetric and can be shown to be positive definite [8,15,19]. Noting that (19) can be
written as

o [

and using the following relaticn which is deduced from (14) and (16),

[ I

we have (3]

This leads to

(21) {su+HsT =0

We see that S, H, L are not independent of each other. We also see from (21)2 3 and
their counterparts

that SH, LS, I:I—1§ and §§ are antisymmetric.
THE STRUCTURE OF §, g, {. AND 1:11, N3 The three real matnces S, H,
I:, which are the Barnett—Lothe tensors, appear very often in the solutions to anisotropic

elasticity problems (see [7,8,20,21], for example). The cxpressions given by (19) are based
on the assumption that the eigenvectors { span a six—dimensional space. When N is

non—semisimple, we do not have six independent eigenvectors and (19) are not valid. In

75




fact, cne encounters problems also when I:I 1s almost non—semisimple. A modified expres-
sion in place of (19) when N is non—semisimple or almost non—semisimple was presented
in [22]. The modified expression applies to simple N as well.

An alternate approach which avoids the determination of eigenvectors is the integral
formalism introduced by Barnett and Lothe. We generalize the matrices Q, R, T defined

in (6) to )
Qiy(8) = Cippgnjng s

(22) 1 Ry (0) = Cijksnjms ,

Ty (8) = Cijpegmimy
in which 4 is a real parameter and
n, = (cosd, sind, 0) ,
m, = (-sind, cosd, 0) .

When 8 =0, (22) reduce to (6). With Q, R, T, defined by (22), the three 3x3 matrices
N. and the 6x6 matrix N of (10) also depend on 4. Equation (9) now becomes

(23) N(8){ = p(6)¢ -

It can be shown that when pa(0) are distinct, { . e independent of §. It can also be
shown that p(#) is related to p(0) = p of (9) by [8,17]

_p cosfd — sind
p(f) = p sinf + cos¢

(24) = fv {ln (cosd + psind)}

We now consider the integrals
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When 6§ = r, the integrals in (25) are called complete integrals. Barnett and Lothe [6]
proved that S, H, I: of %19) are identical to the complete integrals

(26) S=8(r), H=H(r), L=Lx).

This provides an alternate to the determination of the three real matrices S, H, L. In (26)
the need of determining the eigenvectors are circumvented and hence the problem of re-
peated eigenvalue disappears.

Equations (25) can be integrated explicitly for isotropic materials. For 4 = r, we
have

in which 4 and v are the shear modulus and Poisson’s ratio, respectively. Complete
integrals of (25) for transversely isotropic materials can ., found in (8] but that for more
general anisotropic materials have not been cvailable.

For general anisotropic materials, Chadwick and Ting [23] have shown that S,H, L

have the same structure as {27) for isotropic materials if a proper basis and proper tensor
components are chosen for the tensors S, H and L. They showed that the eigenvalues of

S are 0, #is where s is real and positive. Let the associated eigenvectors be eq, € F

ie2 where e i=1,2,3 are real vectors and let the reciprocal eigenvectors e' be defined
by

If we choose the following tensor components for S, H,L,

S=Seel,
~ J-l-
H=Hee.
~ ,.l-]
L= L..elej ,
~ IJ.. -~
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1t can be shown that

: 0 —s 0 (1-s*)/7 0 0
Sj= s 0 0}, HIJ=%‘= 0 (1-s?)/7 0],
[0 0 0 0 0 1
(28)
7 0 0O
Lij=;; 0 1 0},
i 0 0 1

where x, 7, s are constants. The identical structure between this and (27) is strildng. It
should be noted that (28) for general anisotropic materials has only three constants 0 < s
<1, >0 and 7> 0.

The three matrices N. defined in (10) depend on the elastic constants in a compli-
cated way, particularly so for N, and Nj. Itisshownin [15] that —Ng is positive semi-
definite and N., N, have the structure

-1 .3
*_1* *0*
Ny=|* 0*|], Ng=|000],
#0* #0*

in which the * elements can be expressed in terms of the elastic compliances which are the
reciprocal of Ci ks’ The fact that N, has the property shown above was crucial in solv-

ing the problem of the elastic wedge subject to uniform tractions on the sides of the wedge
[24]. Clearly, the property of I:Il and N, will be useful also in solving other anisotropic

elasticity problems.
While N,(4), 1:13( #) do not have the same structure as N;» Ng except at § =0,
if we write
* T
Ni(ﬂ) = 9(0)151(0)9 (9),

aT(9) = [n(o), m(f), 93] . el =(001),
* *
N,(8) and N,(f) have the same structure as N ; and Na. This is not surprising be-
*
cause 1:1:(0) are N. referred to the rotated coordinate system x = x [25]. It is clear

that —-1:1;(0) as well as ~N(§) are also positive semi—definite.

NEW IDENTITIES. In many applications, the arbitrary functions fa(za) in (11)
or (12) assume the same function form for all a. The simplest ones are power of z,, ie.,




fagza) = qazz , (a not summed),
where 1 and q, a=1,2,3, are arbitrary complex constants. If we define the diagonal
matrix

A

2" = diag (z

1 22' 3)
we may write (11) as

in which the elements of q are qy, 45 a3- Replacing the complex constant g by two
real constants g and h through

18
P e,
jor}
N

-
o
Nt et
[=n
+
[ 3]
o
44
ety
(o0
[\
b
[S—
o

This form of solution can be used for analyzing stress singularities in a composite. In [21],
the order of stress singularities 1 at an interface crack was obtained in closed form for
general anisotropic elastic materials. With 1 obtained explicitly in closed form, one can
look at the imaginary part of A and study under what combination of materials the oscil-
lations in displacement near the crack tip disappears.

When 1 is an integer, positive or negative, the quantities in the brackets in (29)
can be expressed explicitly in real form. Using (4) and (9), we have

3 = (x + pxy)¢ = (x,] + xN)¢ ,
or

azt| )
BZ" =(xl£+x2111)

~

W v s S -2

If we post—multiply both sides by [BT AT] and use (20), we have the identity

(30) 2 Re
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which provides a real expression for the quantities in (29) without determining the eigen-
values p and the eigenvectors {.

Although (30) applies also for negative integer A, the right—hand side of (30) is not
a very useful form since it requires an inverse of 6x6 matrix. However, if we use the polar
coordinate system

x) =1 cosf , Xg =T sinf
and employ the following identity proved in [25],
{cosf I + sind I:I}"1 = {cosd — sind N(6)} .
the right—hand side of (30) becomes
A . —A
r"{cosf —sind N(§)} *,

which is a useful form for a negative integer A.

For the wedge problems {24,25], A = 1 is used for uniform tractions applied on the
sides of the wedge while 1 = -1 is used for a concentrated couple applied at the wedge
apex.

Another function form for f(z) which appears in the problem of a concentrated
force and a line dislocation in anisotropic elastic materials is

fa(za) =q lnz, (a not surmnmed) .
Defining the diagonal matrix

In Z = diag (In 2, ln Zy, In 23] ,
we have

u=2Re {402 2)8T} b + 2Re {A(n 2)T]

e

(31)

¢ =2Re {B1a 2)BT} b + 2 Re (B 2)AT} 5.

To find the real expression for the quantities in brackets, we first notice that
z = r(cosf + p sinf)
and, using (24),

Inz =Inr + In (cosd + p sind)

g
=1nr+J- p(e) do .

(o]




Next, from (23) we have

(In2)¢ = {(mr); + r.\}(o)} (,
or
Alln2) | - A
(32) stnz) | {(mr); + xly(o)} .|
where, following (25),
9 - N
5(8) H(o
(33) N(@):%J. N(v) do = j( ) jlf)
: L -i(0) §7(0)

Finally, we post—multiply both sides of (32) by [l~3T éT] and use (20) to obtain the iden-
tity

(34) 2 Re o= {(m 0l + 7151(0)} |

With (34), (31) can be written as

u= {(ln nl + 1§(0)} h + 1@(0)5.
(35)

p=-rk(on + {(n 01 + $T0)}g.

The surface traction t g onany radial plane 4 = constant is determined by differ-
entiating ¢ with respect to . We have

(36) ty=1"g,

which is independent of 4. In [26], (36) i derived from equations of equilibrium without
employing the stress—strain laws. Therefc ¢, | '“‘5-2 applies also to composite spaces [27] and
to angularly inhomogeneous anisotropic ms - ls &6,28]. It should be pointed out that,
although ¢ in (35)is not valid for angularly ...homogeneous materials, u in (35) remains

valid in such materials. The only modification required is in (33) where the integrand
N(8) contains Cijks which depend on 4.

CONCLUDING REMARKS. The Stroh formalism is elegant and powerful. The
formalism is also very effective in treating the surface waves [3,8,29], Stoneley waves
[30,31] and waves in layered composites [327. The real matrices N.(4), the incomplete
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integrals S(&), IiI(B), I;,(H) and the complete integrals S, H, L, which are the

Barnett—Lothe tensors, appear often in the solutions to anisotropic elasticity problems.
The striking simplicity in the structure of S, H, L for general anisotropic elastic materials

as shown in (28) is puzzling. It is believed that S(@), I:{(H), I}(&), as well as S, H, L have

physical interpretations. For I:;(&), it is shown in (24] that if the stress in the anisotropic
elastic material depends on 4 only, the stress tensor is, with the exception of the 733

component, proportional to L(4).
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TOTAL ABSORPTION IN ELASTIC MEDIA*

William W. Hager Rouben Rostamian
Department of Mathematics Department of Mathematics
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ABSTRACT. We examine the problem of designing a homogeneous, isotropic elastic

slab that totally absorbs an incident plane wave.

INTRODUCTION. In {1] we present a systematic method to analyze the interaction of

steady-state, harmonic plane waves with a stratified elastic media. In this paper we apply our
analysis to design a homogeneous, isotropic elastic slab that totally absorbs an incident plane
wave propagating through an adjacent fluid half-space. To begin, let us consider a
homogeneous, isotropic elastic solid half-space in contact with a fluid half-space. When a
harmonic plane wave travels through the fluid and strikes the solid-fluid interface, the
propagation directions of the reflected and refracted waves are determined by Snell’s Laws,
while the amplitudes of the reflected and refracted waves are determined from the continuity of
displacements and -tractions at the interface. For a solid-fluid interface, we have no control
over the reflected and refracted waves; the outcomes are govemed by the fundamental laws of
physics. But when an elastic slab is inserted between the fluid and the solid half-spaces, we
show that the mechanical properties of the slab can be chosen so that the amplitude of the
reflected wave vanishes. The choice of the mechanical properties depends on the frequency

and the angle of incidence for the incoming wave.

“This research was supported by U.S. Army Research Office Contract DAAL03-89-G-0082.
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NORMAL INCIDENCE. In this section, we consider the case where the incident wave

is normal to the fluid-slab interface. This particular case can be treated directly, without
reference to our earlier analysis. On the other hand, the results provide. insight into the
analysis of oblique incidence. Suppose that the x-axis is oriented perpendicular to the slab and
the slab occupies the region 0 < x < T, where x = T is the slab-fluid interface. The equation of

motion is

3 B (2
pEITT = = (xx)5>),

where v = v(x,t) is the displacement at position x and at time ¢. We assume that

xx) =¥ and px) =p; for x>T,
X(x) = x and pix) = p for  0<x<T,
wx) = X and px) = pg for x<O.

Assuming harmonic time dependence and a unit amplitude for the incident wave, the general

solution of the equation of motion has the form v(x,r) = u(x)e!™ where ® is the wave

frequency,

u(x) = e 4 pemionG-T)  gp 5T,
u(x) = 1,619 + el for 0<Sx<T,

1e' 950 for x<O0.

u(x)
Here the slowness parameters sy, 5, and sq are defined by
sy = Npixy, s = Ypix, and sq = Vpo/%o .

(The slowness is the reciprocal of the wave speed.) The amplitudes r, 1, t,, and T_ can be
determined from the continuity of displacement v and stress xdv/ox at the interfaces x = 0 and

x =T. Altogether, there are four equations of continuity:




T= T, +1T_
l+r = T+eimsT+,Le—im:T
SoKeTt = ¥s (T, - 1T)

sk (1 =r)= xs(t,e'®7 — g7
Solving these equations for 7 and setting r = 0 yields the relation

176 _ %0=9 e

) = e '
c,+0 Gy+ O

where
o) = VKip;, 6 = Vkp, and G = VKoPo.

Since the mechanical parameters arc all real, equation (1) only holds when the exponenuial term
is +1 or—1. Hence, there are two cases to consider:
Case 1. e 2T = _y,

In this case, the exponent 2wsT is an odd multiple of x. In other words, wsT = (m+¥)x

for some integer m, or, equivalently,

[0} oTVp/x = (m+¥)r.

Substituting -1 for the exponential term in (1) gives o= GO, or, equivalently,
3) kp = VkopoVKiP1.

Thus the impedance wﬁc?:' of the slab is the geometric mean of the impedances of the half-
spaces it separates. Together, equations (2) and (3) determine the ratio p/x and the product

px. Therefore, they determine a unique p and x for each choice of the integer m in (2).
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Case 2. e~d0T = 41,

In this case, the exponent 2wsT is an even multiple of &, which implies that
4) wsT = oTVp/x = mn

for some integer m. Again, this equation restricts the slowness to a countable set of discrete
values. However, when we substitute +1 for the exponential term in (1), we see that oy = ;.
That is, this case occurs only when the materials in the two half-spaces have the same
impedance. On the other hand, if the impedances match, then for each integer m, there is a 1-
parameter family of slab materials, with slowness given by (4), that totally absorbs the

incoming wave.

OBLIQUE INCIDENCE. Now let us consider a plane wave al sifiaes the soad-nwd

interface at an oblique angle, generating reflected and transmitted (refracted) waves. Again, we

will show that the material in the slab can be chosen to annihilate the reflected wave.

To begin, we briefly review wave propagation in homogeneous, isotropic materials. Let
p denote the density, and p and A denote the Lamé moduli of a homogeneous, isotropic
linearly elastic material. If p > 0 and 2u+A > 0, then exactly two types of waves propagate in
the elastic media: dilatatioral waves, in which the directions of displacement and propagation
coincide, and shear waves, in which the directions of displacement and propagation are
orthogonal to each other. Let ¢, and ¢, denote the dilatational and shear wave speeds defined
by

c4=‘\/2%+—: and c,='\/—-gj.

and let D and S denote the dilatational and shear slowness given by

D=1l and S = l/c,.
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For any unit vector d, the expression v(x,t) = df(t—-Dx-d) defines a plane dilatational wave
which formally satisfies the equation of motion. Similarly, given two unit vectors s and p
where s-p = 0, the expression v(x,t) = pg(t-Sx-s) defines a plane shear wave which formally
satisfies the equation of motion. The functions f and g are called the wave profiles, the vectors
d and s are the propagation vectors, and the shear wave is said to be polarized in the direction
p. Throughout this paper, we consider harmonic waves; in principle. waves of more general
form can be synthesized by the superposition of harmonic waves. The motion of harmonic

waves is described by the real or the imaginary parts of the expressions

v(x,t) = 8de!™P4D) and  v(x,1) = opel™-SS

Consider a plane interface / separating two distinct half-spaces of homogencous, isotropic
elastic materials. A dilatational wave striking the interface typically generates a reflected
dilatational wave, a reflected shear wave, a refracted dilatational wave, and a refracted shear
wave. Similarly, a shear wave striking the interface typically generates waves of all four types.
Therefore, when a combination of dilatational and shear waves impinges upon the interface,
eight different waves are generated altogether. The plane formed by the propagation vector of
an incident wave and the nomal to the interface / is called the plane of incidence for the wave.
The propagation vectors of the outgoing waves are determined by a set of equations known as

Snell’s Laws which we state as follows:

The propagation vectors d, and s, for a reflected wave and the propagation
vectors d, and s, for the transmitted wave lie in the plane of incidence for the
incoming wave. Moreover, if m is a unit vector in the intersection of the
interface and the plane of incidence, then for an incident dilatational wave with

propagation vector d, we have

5 Dd-m = Dd;'m = §s,,m = Dd;'m = §.s-m,




and, for an incident shear wave with propagation vector s, we have

(6) Ss'm = Dd;'m = Ss;m = Ddi-m = Ss-m.

Given the unit propagation vectors d and s of the incident waves, equations (5) and (6)
determine the propagation vectors of the corresponding scattered waves. Note that if a pair of
incident dilatational and shear waves share a common plane of incidence and if they satisfy the
relation Dd-m = Ss-m, then the two reflected waves have the same direction as do the two
refracted waves. In other words, there are four rather than eight outgoing waves. A pair (d, s)
of incident waves which lie in the same plane of incidence and which satisfy the relation
Dd-m = Ss-m will be called a conjugate pair of waves. Note that, when a wave strikes an
interface between two homogeneous materials, both the reflected and the transmitted waves

form conjugate pairs.

Let us now consider a homogeneous elastic slab of thickness T separating an isotropic
fluid to the right of the slab from a homogeneous, isotropic elastic material to the left of the
slab. The ratio of the amplitudes of the reflected and incident waves is the reflectivity of the
slab. In the paper [1], we obtain a formula for the reflectivity in terms of a local impedance
tensor. Suppose that a conjugate pair of waves have propagation directions d and s and
polarization direction p contained in the plane of incidence for an elastic material. Viewing d

and p as 2-dimensional vectors in the plane of incidence, we define 2 x2 matrices

A =[dip] and B = [ D{2ud-n)d + An} | Sk{(s-n)p + (p-n)s} ].

Then the local impedance tensor H is given by H = BA™!.

Let H denote the local impedance tensor of the slab, Hy the local impedance tensor of the
left half-space, n the normal to the slab-fluid interface (pointing into the slab) and d, and D,
the propagation direction and slowness of the incident wave. We regard the fluid as a

degenerate elastic solid with Lamé moduli u; = 0 and A, > 0. By Lemmas 4.1 and 5.1 in [1],

a0




the reflectivity r of the slab can be expressed as

nT dl - llD ]nTrn
anl + llD 1|'|TPn

where

Q) [ = (I+L][H-PHPL]!, L = PAAA'P[PHP+H "' (H - HjJAAA™},

e—i(l)DTd'll 0
P=I-2nn", and A =

0 e-imsTs-n

Again, T denotes the thickness of the slab, D and S are the dilatational slowness and shear

slowness of the slab, and  is the frequency of the incident wave.

Now consider the problem of choosing the slab material in order to annihilate the

reflected wave. Observe that the reflectivity is zero if and only if

nrdl
MDy

® n“I'm =

Since the right side of this equation is real, the left side must be real, also. The only way that
complex numbers enter I is through the diagonal matrix A, which appears as two factors of L.
Let a = ®DTd-n and b = @STs-n be the parameters that appear in the exponents on the

diagonal of A. In order to ensure that L is real, we must choose a and b such that

e = 41, B = 41, and 7@ = 11,

Hence, either a = mn and b = a®, or a = (m+A)x and b = (n+'42)x for integers m and a.

Defining the matrix J by
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there are essentially 4 distinct A, corresponding to different choices of m and n, that we need

to consider:
A=1 a=mx, b=nn, mand neven,
A=) a=mx b=n%n modd and n even, or m even and n odd,
A iI, a=(m+%Wnr, b=((n+%nr, mand neven,
A =1, a=m+Ar, b=O+%r, modd and n even, or m even and n odd.

Each of these cases will be analyzed in the following sections. When studying normal
incidence, we saw that there was one ‘‘degenerate’” case in which total absorption was only
possible if the impedances of the left and right half-spaces were identical. For oblique

incidence, the degenerate case is A = I.

THE CASEA =1

Lemma 1. IfA =1, thenr =0if and only if

an‘

TH-l =
n o n MD,

Proof. Observe that L = [PHP+H,]"'(H-H,] when A = I. Hence, the second factor in

the definition of I" can be written

H - PHP[PHP+H'(H-H,]

= H - (PHP+H,—-Hy)[PHP+H,] " {H-H,)
= Hy(l + [PHP+HyJ '[H-H,})

= Hyd+L).

H - PHPL

Referring to the definition of T, we see that I' = Hg!. Equation (8) completes the proof. o

When A = I, the incoming wave is absorbed only if the elastic material in the left half-
space satisfies the special condition given in Lemma 1. On the other hand, if the condition of

Lemma 1 is satisfied, there is a 1-parameter family of slab materials that annihilates the
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reflected wave. In particular, any material that satisfies the conditions
wDTd-n=mn and wSTs-n =nn

where m and n are even integers annihilates the reflected wave. Given the angle of the
incident wave, the expressions d-n and s-n can be evaluated using Snell’s Laws. Omitting the

algebra, it follows that the incident wave is absorbed totally when

w?’T?
7!
’lzﬂz + ((DTD 1 sin a,)

9) B = P8 M= pgn~28) & =

where a,; i» the angle of the incident wave relative to the normal 0 the slab interface and m
and n are even integers. Treating the wave frequency @, the slab thickness T, and the angle of
incidence «; as constants, there is a 1-parameter family of perfect absorbers, with Lamé
moduli 4 and A given by (9) in terms of the parameter p, corresponding to cach pair of even

integers m and n.

THE STRUCTURE OF T'. In order to analyze the other choices of A, it helps to see

how H depends on p. From the definition of a and b,

¢ = old-n and ¢, = (oT:-n.
Also, by Snell’s Laws, we have
c4,d-m €4, S M
Cq = —— and ¢, =
4 d;-m f d;-m

Hence, the tangent of the angles a and § (relative to the interface normal n) of the dilatational

and shear waves transmitted in the slab are determined:

a3




d-m _ oTd,-m an _ s-m _ oTd;-m
acy, s-n b cy,

£

(10) tan a

a.
=

Finally, the wave speeds are given by

€q,Sin @ cq,Sin B
€Cg = —— and ¢, =
d d‘ .m t 4

d‘-m

In {1] we present an explicit formula for H relative to a rectangular coordinate system
with n pointing along the positive x, axis and with x, in the interface between the fluid and

the slab. Relative to the geometry of Figure 1, we have H = pH where

q ¢, $cos B -sin (a-2B)]

= Cos (a-P) (sin (@~23) cosa |

., 0 = ¢ylc,,

and o and B are given by (10). In summary, for fixed @ and b, H is a linear function of the

X,

Figure 1. Propagation and polarization vectors.
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density p of the slab. Observe that H is invertible whenever ¢; > 0 and ¢, > 0. Moreover,

H' = p7'H™! where

cos (a—P) cos & sin (a-2pB)
c4cos Bcos & + ¢,sin(a-2p) L~Sin (@=2P)  ¢cos P

and ¢ = cy/c,.

LARGE p. Let us now determine the limiting behavior of T" as p tends to infinity. Since
H depends linearly on p, we see from (7) that each element of I is a rational function of p;
that is, each element of I' is the ratio of two polynomials. Recall that a rational function is
either constant (independent of p), or it has a finite number of zeros and poles. We already
discovered one case where this rational function is completely constant -- when A = I, T =
H,! independent of p. However, in general T' depends on p. Since H™'H, approaches zero

as p tends to infinity, the limit of L as p tends to infinity is easily evaluated.

lim L = L where L = PAAAT'H'PHAAAL.

Referring to (7), T has the following asymptotic form as p tends to infinity:
(11) I = po'T + O(p?) where T = (I+L)(H - PHPL) .

Note that the formula (11) only makes sense when the quantity H — PHPL is

nonsingular. In particular, for the special case A = I, we have

H-PHPL = 0,

which explains why the asymptotic limit (11) is incorrect when A = 1. However, for the other
choices of A, the quantity i - PHPL is generally nonsingular. In particular, in the case A =

il, it is readily verified that
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H - PHPL = 2H,

which is nonsingular since H is nonsingular. For the case A = J, let us employ the coordinate
system depicted in Figure 1. In this coordinate system, P is equal to J and the matrix

H -~ PHPL is a nonsingular multiple of the expression
BJB™' - JBJB'J,

where B is the matrix that appears in the definition of the impedance tensor: H = BA™.

Similarly, taking A = iJ, it follows that H — PHPL is a nonsingular multiple of the expression
BJB~' + JBJB'J.

Focusing on BJB~' + JBJB™'J, we have

LEMMA 2. Given a nonsingular matrix

ac
B= |y af
the expression BJB™' ~ JBIB~'J is nonsingular if and only if a, b, c, and d are nonzero. The
expression BJB™! + JBJB™'J is nonsingular if and only if bc # ad.

Proof. This is verified by evaluating the determinants:

16abcd

-1 _ “171y =
det (BJB™! - JBJB™'J) o B

and

-1 -} = —4 ad-bc 2
det (BJB™! + JBJB~1)) -J——Ldem -

In [1) we provide the following representation of B for the geometry depicted in Figure
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1 [@r+A)cos 2B ¢usin 28

B = T, | “Hsin20  ¢ucos 2B

where ¢ = c/c,. First let us consider the case A = J so that H — PHPL is nonsingular if and
only if every element of B is nonzero. Assuming the angle of incidence is not normmal to the
slab (nomal incidence was studied earlier), the (1,2) and (2, 1) elements of B are nonzero.
Although the (1,1) and (2,2) elements of B are zero if § = n/4, an infinitesimal perturbation in
the thickness or the frequency yields B # n/4 and H — PHPL invertible. In the case A = iJ, it
follows from Lemma 2 that H ~ PHPL is singular if and only if

(u + A)cos22B = psin 2asin 2P.

Utilizing (10), this relation is equivalent to

(12) B = arctan ‘/\v + 1+ Vy?+2y where vy =2alb.

Referring to (10), we see that there are special values for the frequency and thickness that lead
to singularity; but again, an infinitesimal perturbation of T or @ restores invertibility. We say

that the slab is singular if either A =1, A = J and B = n/4, or A =iJ and B satisfies (12).

In summary, when the slab is nonsingular, I approaches (asympiotically) T/p as p

increases. In particular, I" tends to zero as p increases.

SMALL p. Let us consider a nonsingular slab and the geometry depicted in Figure 1. In
this case, n’Ih equals the (1,1) element of I’ which we denote y. Since T is a rational
function of p, y is a rational function of p that tends to zero as p increases. In a separate
paper, we will show that y 2 O for every choice of the density. Consequently, y has no poles

along the positive real axis, and we can satisfy (8) for some p whenever
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anl

AD,y

0 < < Yo,
where y, denotes the limit of ¥ as p tends 0 zero (Y approaches zero as p becomes large, Y
approaches Y, as p tends to zero, and y depends continuously on p). Thus the value of ¥,

provides insight conceming the incident waves that can be absorbed.

We have evaluated ¥, for each of the choices A = J, A = il, and A = iJ. It tums out that
the evaluation of ¥, is quite difficult since very complicated trigonometric matrices must be
multiplied together and simplified. With the assistance of a symbolic manipulation package,

we found that for p near 0 and for each choice of A, I" has an expansion of the form:
r=Tp' + STH5'S + O(p)

where the T and S corresponding to the various choices of A appear in Table 1.
Observe that in each case, the (1,1) element of T is zero. Thus for each choice of A, Y,

is the (1, 1) element of ST H;'S, which is easily evaluated:

LEMMA 3,
Hs"H
(1 - 2cos 2B)?
Hy)pcosa
sin? (o—2P)
(Hg"y cos? acos? (a—P)

(sin acos (a+B) + cos Psin 2571

when A

n
&=

Yo

"
=

when A

Yo

when A

"
&

Yo

For a nonsingular slab and for each choice of A, there exists a value of p that absorbs the

incident wave whenever

nrd‘

(13) 0 =< "D,

< Yo

Finally, let us verify the claim made at the beginning of this paper concerning the

existence of a material that totally absorbs any given incident wave.
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T = 2sin B [0 ‘1]
¢, (1 = 2cos 2B) 1o

" ¢, sin (@~2p)

B W I [P RPN N

-1 0 sin (@—-2p) [—cos &

¢ cos B

T = cos 2o + cos 28 [0 'l]
2¢, (sin a.cos (au+P) + cos Psin 2B) 1o

cos (.~ B) [0 ¢C°SB]

sin acos (au+P) + cos Bsin 28 |[cosa O

Table 1. T and S for various choices of A.
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THEOREM 1. For any given incident wave, the mechanical properties of the slab can be

chosen so that the amplitude of the reflected wave is zero.

Proof. By equation (10), the angles o and B can be made arbitrarily close to zero by
taking m and » sufficiently large. By Lemma 3, ¥, tends to infinity as o and B tend to zero if
A = il. Also, by (11) vy tends to zero as p increases when A = il. Since the inequality (13)
holds for m and n sufficiently large, there exists a density for which the slab totally absorbs the

incident wave. a

NUMERICAL EXPERIMENTS. The inequality (13) provides a lower bound on the

range of incident angles and frequencies that can be absorbed. Although the range of y as a
function of p contains the interval [0, Y], potentiaily the range extends outside the interval.
Experimentally, we find that y is nearly a monotone function of p so that the interval [0, Yy}
accurately predicts the incident waves that can be absorbed. Figures 2, 3, and 4 show typical
plots of ¥ as a function of p for various choices of A. These graphs correspond to a material
like steel in the left half-space and the fluid water in the right half-space. In particular, the
following mechanical parameters were employed:

Right half-space: p; = 1 gm/cm’, g = 140000 cm/sec, A; = pc .

Left half-space: po =7 gm/cm3, Ag = Ay, Bo = Ay/3.

Slab: T=5cm.
Incident wave: o, = 30 degrees, @ = 600x rad/sec.

Since the graphs in Figures 2, 3, and 4 appear monotone, the range of y is accurately
estimated by the interval [0,Yy]. (Note though that the numerical values of y in Figure 4
deviate from monotonicity in the fourth significant digit near p = 0, a deviation that is
imperceptible to the eye, but which is large enough to undermine any proof of monotonicity
for v.) In Figure 5 we plot the density of the material that totally absorbs the incoming wave
versus the angle of incidence. Observe that as the angle of incidence approaches 90 degrees
(with the wave speed fixed), the density tends to infinity. In Figure 6 we plot the density of

the material that totally absorbs the incoming wave versus the wave frequency. Observe that
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as frequency tends to zero (with the wave speed fixed), density tends to infinity, and as

frequency tends to infinity, density tends to zero.

Numerically, we investigated singular slabs associated with A = J and A =iJ. We found

that y was equal to Y, independent of p (for fixed wave speed).
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ABSTRACT

A shear block approach has been used to model the transient shear response of a rigid block-flexible support system
subjected to a nonpenetrating side-on hypervelocity projectile impact. The initial velocity imparted to the shear
block due to impact has been calculated using a moraentum balance between the projectile and the rigid block and
has been imposed as an initial condition for the transverse dynamic equation of motion of the block-support assembly.
The spring constant of the support has been evaluated based on the support height and the shear area. The forcing
function has been computed assuming that the entire projectile ' "% is consumed at a constant rate in a finite length
of time and a triangular force-time relationship is impose.” on the system. The nonhomogeneous transverse equation
of motion for the assembly is solved for trar-verse displacement, velocity and acceleration and the constants for the
complimentary and the particular part of the solution are evaluated using a set of initial and boundary conditions.
The displacement solution is optimi.ed by setting the velocity equal to zero and obtaining a peak response time
at which the displacement is an optimum. The acceleration at this time is found to be negative ensuring that the
solution for displacement is a global maximum. Once the peak transverse displacement of the block-support system
is known, peak shear stress and strain can be easily calculated and compared to the shear yield stregth of the parent
material in order to ensure the structural integrity of the system from a shear strength standpoint or predict the
occurrence of dynamic shear failure of the assembly at the interface between the block and the support

INTRODUCTION

The capability to predict the effect of hypervelocity impact of a missile upon a rigid or
deformable structure is a necessity as a first step towards the design and safe operation of
nuclear reactors (1,2) as well as defense systems subjected to extreme environments. This
problem is also of considerable interest to the Ballistic Research Laboratory (BRL) due to
possibility of sustaining severe damage at a vulnerable location of the target structure when
impacted by a projectile at a specific angle of obliquity.

A number of studies have been performed and damage data gathered (3-7) over the years.
However, most data available are in the form of impulse correlation curves and crater shapes
in plates due to slender rods while relatively little has been reported in terms of dynamic
stress-strain response of multibody systems consisting of interconnected rigid and deformable
bodies subjected to impact and sudden change in the structure.
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Recently, computation using hydrodynamic codes (8-10) has been reported. Unfortu-
nately, setting up an accurate computational model, code computation and assimilation as
well as correct interpretation of the results are expensive and time consuming and require
considerable expertise for the project leader. Because of limited time and cost constraints
it was decided early on to resort to a feasible analytical approach in lieu of a numerical
approach which will eliminate undue complexities of the real problem while retaining the
essential features of the loading process and giving an insight into the impact phenomena,
the dominating stress and failure mechanisms.

IMPACT CONDITION

Let us assume that a large projectile of mass M, travelling with an initial velocity, W,
in a horizontal direction collides with a stationary massive object of mass M; supported
underneath by a series of plates which in turn are connected to an even larger mass by
means of continuous double seam welding. Because of the nature of these masses and type of
construction, shear phenomena appears to dominate stresses and failure in such structures
rather than bending which is the governing mechanism in mass-beam coupled systems.

Assuming the target to be rigid and a constant average deceleration rate upon impact
based upon a linear decay of velocity from V] to a zero velocity as well as an average duration
time to consume the total length of the impactor, it is possible to calculate a linearly decaying

forcing function with a triangular equivalent impulse which can be imposed upon the rigid
mass in a side-on horizontal direction such that

Fy=M(Vi=- 0)/(Ti = T2) = MiW/T (1)

where T is the duration time and F, is the decelerating force.

Invoking a momentum balance between the impactor and the target mass which is now

allowed to move in a horizontal direction, it is possible to compute the imparted final velocity
of the taiget as follows: '

MV, = V(M + M)
or, ‘/2 = MIV]_/(Ml + M2) (9)

4

where, M, is the impacting mass with an initial velocity of V; and M, is the target mass.
Once the imparted velocity of the target mass is known it can be imposed as a constraint
condition for the equation of motion to solve the boundary value problem.

PROBLEM FORMULATION

Prior to shear stress computation it is necessary to obtain the dynamic equation of motion
of the target-support assembly in the form:

MyZ + Kz = F(t) (3)
where F(t) is the externally applied force upon the target, K is the support stiffness and
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x is the horizontal displacement of the target as shown in Figure 1. From this figure shear
strain, y, at the block interface and shear stress, T, can be given as

y = z/h
T = Gy (4)
where h is the height of the shear block support and G is the shear modulus.

The spring constant for the support is evaluated by referring to the free body diagram as
shown in Figure 2 where F,; is the shear force at the interface given as

Fy. = 2TA=2GyA =2GA(z/h) = kz
k = 2GA/h (5)

where A is the shear area at the interface between the block and the plate. The equation
of motion of the block support system could be rewritten as

M,z + 20 .\z/h = F(t) (6)
METHOD OF SOLUTION

The dynamic equation of motion of the block support assembly subjected to a horizontal
side-on impact load as given in the previous section, needs to be solved for the time dependent
displacement, x, subjected to the constraint conditions that initial displacement is zero at

time t = 0 when initial velocity is V; which is the initial target velocity obtained earlier from
invoking the momentum balance.

The forcing function, F, could now be assumed to be a triangular force-time curve with
linear decay in the form

F=F,1- t/t] (7)

where F, is the peak impact force and ¢, is the positive phase duration. At t =0, F
reduces to F, and at t = t,, F vanishes which satisfies the initial constraint conditions.

The equation of motion could now be rewritten as

M,T +2GAz/h = F[1 - t/t,) (8)
The solution of above equation of motion can be expressed as a sum

z(t) = zc(t) + 2,(2) (9)
where z.(t) is the complimentary solution satisfying the homogeneous equation

¥ +2GAz/(Myh) =0 (10)

and z,(t) is the particular solution satisfying the nonhomogeneous equation
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z + 2GAz/(Mh) = F,[1 = t/t,)/ M, (11)

A complimentary solution for the standard homogeneous equation above can be given as

z.(t) = Acos(wt) + Bsin(wt) (12)

where A and B are constants to be evaluated from the initial and boundary conditions and
w is calculated as

w = 2GA/(Mah) (13)

Similarly, following the procedures outlined above with some modification for the non-
homogeneous part of the equation of motion, a particular solution could be obtained as a

function of the peak load, target mass, plate stiffness, positive phase duration and the elapsed
time as shown below :

zp(t) = [Fp/(szZ)Hl - t/tp] (14)

Hence the total solution for displacement of the shear block in a horizontal direction is
given as

z(t) = Acos(wt) + Bsin(wt) + [Fo(1 = (t/t,))/(w*M>)] (15)

Once displacement-time history of the impacted structure is known it is possible to obtain

velocity of the block in a horizontal direction by differentiating the abeve equation with
respect to time which results in

z(t) = Bwcos(wt) ~ [Awsin(wt) + F,/(w?Mat,)] (16)

where A and B are constants evaluated from initial and boundary conditions for the
problem.

Accelaration-time relationship for the target-support assembly can be easily obtained by
differentiating the velocity in equation above with respect to time which yields

Z(t) ={B w’sin(wt) + Aw’cos(wt)) (17)

The minus sign on the right hand side of the equation indicates negative acceleration or
deceleration of the block with time which is to be expected due to the restraining action of
the welded supporting plates underneath the block.

OPTIMIZATI ON' PROCEDURE

In order to predict the magnitude of peak displacement and peak shear stresses as well
as strains realized by the shear block at the interface between the block and the beam, it is
necessary to determine the specific time of occurrence of the peak response. Optimization
of the peak response by some means is essential to arrive at an optimum occurrence time.
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A standard mathematical approach to optimization is adopted in lieu of a trial and error
minimization scheme. In order to maximize the displacement the derivative of the displace-
ment with respect to time or the velocity can be set to zero such that

Buwecos(wt,,) - [Awsin(wt,,) + Fp/(w?Mat,)] =0 (18)

where t,, is the optimum time at which the peak displacement response occurs. The
above equation is required to be solved for the unknown optimum time. In the particular
case where wt,, is small the above equation simplifies to a form :

Bw - Awt,, + Fp/(w*Mat,) =0 | (19)
or, top = (1/Aw){(B + Fp/ (Mat,w’)] (20)

Peak displacement could now be easily computed by substituting the expression for the

optimum time given above in the equation for displacement time relationship obtained earlier
which can be reduced to a simpler form

z, = A+ But,, + F,[1 = top/t,]/ Maw? (21)
where z; is the peak displacement of the block assembly at time ¢,,. Now substituting the

value of the optimum occurrence time in the above equation one can arrive at an algebraic
expression for the peak displacement of the block in the form

z; = ((A*+ B%)/A) + [Fp/(w*Ma)[1 -
Fy/(AMt2ut)] (22)

where F,,w , M, and ¢, are previously defined known quantities with specific values for a
particular problem and A, B are constants evaluated from initial and boundary conditions.

The displacement is guarenteed to be a global maximum provided the double derivative of
the displacement with respect to time or the acceleration at the optimum time of occurrence
is negative such that

- (Bw?sin(wt,,) + Aw’cos(wtsp)) < 0 (23)

or, tan(wty,) >=(A/B ) (24)

For each optimum time, t,,, the above inequality must be checked out for the specific
problem in order to ensure that the peak displacement is indeed a global maximum. Similarly
the optimum response time at which the velocity of the shear block attains a peak could
be determined by setting the right hand expression of the acceleration equation equal to
zero and verifying that the derivative of the acceleration with respect to time at this time of
occurrence is negative which ensures that the peak velocity is a global maximum.




RESULTS AND DISCUSSION

Although it may be possible to solve exactly for the optimum time from the equations
resulting from the optimization procedure described in the previous section, it is sufficient
for most problems to adopt a trial and error approach where various suitable values of
the optimum time are substituted in the left hand side expression of the velocity equation.
The difference between the calculated velocity and zero which is the right hand side of the

equation is treated as an error which is minimized by adjusting the optimum time until it
nearly vanishes.

Once the peak shear displacement is obtained as outlined, it is fairly easy to calculate
the peak shear strain as a ratio of the peak transverse displacement and the height of the
support plates. The peak shear stress at the interface between the block and the beam can
be easily obtained by multiplying the shear strain with the shear modulus of the materal
for the block-support assembly. The shear stress could be compared with the ultimate or
yield shear strength of the parent material in order to determine the structural integrity of
the assembly. A factor of safety can be worked out by taking a ratio of the ultimate or yield
strength of the material for the support plates to the actual shear stress developed at the
interface. If the factor of safety is less than or equal to 1.0, structural failure in shear is
indicated at the interface requiring redesign of the block-support assembly. However, if the

factor of safety is greater than 1.0 a margin of safety can be given as a measure of structural
integrity.

Although the analysis resorts to several simplifying assumptions regarding the loading
function and the details of the assembly, it gives a valuable insight into the dynamic shear
response behavior of a class of structures subjected to side-on impact loading. The analysis
could be extended to side-on overpressure loading due to a blast by modifying the forcing
function and reformulating the equation of motion resulting in a somewhat different type
of solution appropriate for explosive loading. The procedure outlined above is a quick and

inexpensive method of solution of response of structures dominated by shear phenomena
occurring at interfaces.
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ON THE CONTINUUM MECHANICS OF
THE MOTION OF A PHASE INTERFACE!

Morton E. Gurtin
Department of Mathematics
Carnegie-Mellon University

Pittsburgh, PA 15213

ABSTRACT. A recent series of papers [G,AG,GS] began an
investigation whose goal is a thermomechanics of two-phase
continua based on Gibbs's notion of a sharp phase-interface
endowed with thermomechanical structure. In [G] a new balance
law, balance of capillary forces, was introduced and then applied in
conjunction with suitable statements of the first two laws of
thermodynamics; the chief results are thermodynamic restrictions
on constitutive equations, exact and approximate free-boundary
conditions at the interface, and a heirarchy of free-boundary
prablems. [AG] applied this theory to perfect conductors, in which
the underlying equations reduce to a single evolution equation for
the interface. [G] and [AG] were limited to rigid systems; [GS]
extends the theory to include bodies that deform as they solidify
or melt. These theories involve several new concepts, examples
being: the creation of new material points; work intrinsic to a
moving interface; the formulation of conservation laws for a
moving interface. Here | shall discuss some of the new ideas
involved in [GS].

MECHANICS AND ENERGETICS OF DEFORMING, ACCRETING
CRYSTALS. In [GS],2 the body, ostensibly a crystal, is allowed:

ISupported by the U. S. Army Research Office.

2{GS] was motivated by studies of Leo and Sekerka [LS), Alexander and Johnson
[AJJA], and Larche and Cahn [LC], which derive eguilibrium relations for the crystal
surface as Euler-Lagrange equations corresponding to a stationary global Gibbs
function. Such derivations are appropriate to statics but tend to obscure the
fundamental nature of balance laws as basic axioms in any dynamical framework
which includes inertia and dissipation.
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(i) to crystallize through the addition or deletion of material
points at the crystal surface, a process termed accretion;

(i) to deform.

In conjunction with these kinematical processes, two distinct

force systems are introduced:

(i) a system of accretive forces which acts within the crystal
lattice to drive the crystallization process;

(ii) a system of deformational forces to be identified with the
more or less standard forces that act in response to the local
motion of material points.

Because of the nonclassical nature of accretive forces, it is
not at all clear that there should be an accompanying balance law,
let alone what it should be and how it should relate to the
deformational system. For that reason the underlying mechanical
balance laws are derived from the requirement that the
mechanical production - the rawe of kinetic energy minus the rate
of working - be independent of the observer. Here it is necessary
to introduce a new idea, that of a Jattice observer: in addition to
the standard observer who measures the gross velocities of the
continuum, there is a second observer,? who studies the lattice
and measures the velocity of the accreting crystal surface. This
proceedure leads, not only to the "standard” balance laws for linear
and angular momentum, but to new laws expressing balance of
(micro)forces and (micro)moments within the crystal lattice at the
crystal surface.

One of the chief differences between theories invaolving phase
transitions and the more classical theories of continuum mechanics
is the creation and deletion of material points as the phase
interface moves relative to the underlying material. We associate
with this process internal forces whose working provides an
outflow of "mechanical energy" associated with the attachment and
release of atoms as they are exchanged between phases. We write
an energy balance relating these internal forces, the forces

3The use af more than one observer might be useful in other continuum theories,
such as theories of liquid crystals, of structured continua, or of mixtures, in which
‘force”-balance laws over and above the standard laws arise.




described previously, and the bulk energy of the two phases at the
crystal surface.

COHERENT CRYSTAL-CRYSTAL INTERACTIONS. To
illustrate the results of the general theory® consider an
isothermal crystal-crystal interaction,3 in which the environment
consists of a second solid phase of the crystal material, and in
which the reference lattices can be chosen to match exactly at the
interface, even though the states of stress and deformation will
generally differ across the interface. For such an interface
balance of linear momentum has the form

diV,as + (SB-S“)n = pV(Vu-VB), (LM)

while the accretive laws for force and energy may be combined to
form a single accretive balance law

IUB - \l‘m = (an)'(Fﬂn) - (San)'(Fuﬂ) +
1pvi{IFy n1* = IFgnI?} « (AB)
T -0K - divege + (F'8)aL,

Here o and B identify the two phases; S, v, ¥, and F
(appropriately labelled) designate the bulk Piola-Kirchhoff stress,
the bulk velocity, the bulk free energy, and the bulk deformation
gradient; p is the comman referential density of the two phases;
g, 8 € and w are the surface tension, the interfacial Piola-
Kirchhoff stress, the accretive shear, and the normal attachment
force; n is the outward unit normal to phase «; v, L, x, and
divy are the normal velocity, the curvature tensor, twice the mean
curvature, and the surface divergence for the interface.

The balance laws (LM) and (AB) are general relations,
independent of the particular material under consideration. [GS]
gives a thermodynamic argument in support of the interfacial

41GS] also derives equations for a solid crystal in a liquid meit.
Sct. Larche and Cahn [LC).
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constitutive equations

g = *(F,n),
8 = dgy”™(F,n),
¢ = -D,y"(F.n),
m = §(F,n)v,

(CE)

where ™(F,n) is a constitutive function for the interfacial free
energy, F is the tangential deformation gradient, D, is the
derivative with respect to n following the interface, and

B(F,n) 2 0 is a material function.
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NONLINEARITY OF INVERSE PROBLEMS

T. Mura and Z. Gao
Department of Civil Engineering
Northwestern University
Evanston, IL 60208

ABSTRACT

In this paper, we analyze the inverse problem in which residual surface
displacements are used to evaluate nonelastic deformation in a domain, which
is called the damage domain, of a solid. The problem is taken as an example
to elucidate the nonlinearity of a class of inverse problems.

The problem can be formulated as a system of multi-dimensional Fredholm
integral equations of the first kind. It is a complicated nonlinear problem
since both damage domain (which appears as the domain of integration in the
integral equation) and the nonelastic strains are unknown. The surface data
are not sufficient to determine the shape of the damage domain and the exact
distribution of the nonelastic strains. However, these data can be used to
obtain some important characteristic quantities assocciated with the non-
elastic deformation of the solid, such as elastic energy, stresses in
certain region of the solid or the fracture toughness enhancement due o
localized nonelastic deformation.

The research shows an interesting example of conversions between
nonlinear and linear problems. By introducing the concept of equivalent
damage domain, the general nonlinear problem is first converted into a
linear one which is more tractable, but still ill-posed. A variational
problem is then imposed. This leads to a new linear problem with a
parameter determined by a nonlinear algebraic function. The payoff of the
second conversion is the well-poseness (uniqueness and stability) of the new
problem. This new problem is essentially a nonlinear problem again, but a
much easier one compared with the original nonlinear problem. A numerical
scheme is easily constructed due to the monotonic property of the nonlirear
algebraic function.
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1. Introduction

In recent years, inverse problems are becoming increasingly important
in many scientific fields. Inverse scattering problems deal with the
determination of the existence, locations and sizes of defects in mechanical
structures by measurements of scattered ultrasonic wave. Increasing numbers
of results, especially experimental ones, have been reported (e.g., Ogura,
1983). In the inverse problems of vibration, natural frequencies are used
to reconstruct mass distribution of the structure (e.g., Gladwell, 1986).
Intensive work has been dome in this area, particularly for in-line discrete
systems and one dimensional continuous systems, in which the corresponding
mathematical problems are relatively simple and analytical results can be
derived. Backus and Gilbert (1967, 1970, 1980) have studied the problem of
determining the density distribution in the earth as well as wave velocities
from observed travel time data, together with the known mass and moment of
inertia of the earth, and the frequencies of certain normal modes of
vibration.

This is a paper dealing with inverse problems in solid mechanics. Our
objective is to characterize nonelastic deformation in bulk after a series
of loadings by using only the residual surface displacements instead of the
entire loading history. The residual surface displacements are relative and
are defined as the diffsrence oi the initial and £inal wvalues of the
displacements.

Fig. 1. - A traction free body D with a sub-region where
residual nonelastic strains are accumulated.
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Suppose that nonelastic strains e?j are caused in a subdomain O (damage
domain) of a given body D after a series of unknown loadings (Fig. 1). The
integral equation relating e?j to the residual displacements uy is written
as (Gao and Mura, 1989).

'y (P
I iyt Cum, g (X - XD gy (X)X
a

'I C e Cum, g (% 7 XD vy () ny ds + 3wy () )

ab

’

X' € an

where 3D is the boundary of D; nj is the outer normal of 3D; C, is che

1jk2
elastic modulus tensor of the material and ka(x - x') is the Green's
function for an infinite elastic medium, i.e., ka(x - %) is the
displacement at point X in the Xy direction due to a unit force at point x’

in the xm direction. ka’2(§ - §’) represents (a/axz)Ckm(§ - X ).

Equation (1) can be obtained by using the Betti’'s reciprocal theorem.
We refer readers to Gao and Mura (1989) for detailed derivation.

U uene

Our objective is to determine nonelastic strains E?j and the domain 0

(a nonlinear problem). However, neither of these two quantities can be
obtained from equation (1).

; *
Let 0 be a domain inside the body D. When a distribution of
* *
nonelastic strains is compactible in @ , the remainder D - 0 1is not
disturbed. Hence, the displacements and stresses in D - O* vanish. This

implies that the homogeneous equation of (1) has nonzero solution egj(§) for

arbitrarily chosen domain 0*. It i{s then clear that ‘Ej and Q cannot be

determined uniquely from equation (1).
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Fig. 2. - A two-dimensional body with a line defect
(or dislocation loop).

Consider a two-dimensional case. Equation (1) has the unique solution
when @ is a contour C (Fig. 2). One interpretation of this case is that C
is a dislocation loop. The Somigliano’s dislocation density b yields

nonelastic strains, defined on C,

P 1
eij -3 (bi n.j + bj ni)

Let the equation of the closed contour C be r = r(4). Equation (1) is
then changed to ‘

2r
_ L .
Io Cijit Cm,2 & ° X))y, - r(g)sing €139 T 48

X, = r(9)cosd
- - 1 '
J Cijke Ciam, 2% - 27D ug(X) nyds 5 uy(x7) (2)
aD
x' ¢ aD.
e?j(e), as well as function r(4) (shape of contour C) are determined

uniquely from the surface displacements. The reason for the uniqueness is
as follows.
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We have shown (Gao and Mura, 1989) that the displacement field, of the
points not belonging to Q, are uniquely determined from residual surface
displacements. Therefore, if rigid body motion is properly excluded, the

displacements inside and outside contour C, denoted by u(I) and u(O)

i i
respectively, are determined by the surface displacements. e?j(ﬁ) is then

deduced from the mismatch of u§I) and ugo) on the contour C. Hence,

equation (2) has the unique solution for egj(a) and r(§).

@ Actuaicurve C
s |[nitial guess
® Final resuit

Fig. 3. - The intial and final configurations of iterations
compared to the actual shape of contour C. The

actual values of nonelastic strains are e?j -1
while the computed values are e?l - 0.97,

£, =0.97, &, =0.9.
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An example is shown in Fig. 3, in which we expand r = r(4) by Fourier
series

Q

t(f) = E (a.n gin né + bn cosné)
n=0
x bo + a; sind + b1 cosé. (3

If we assume e?j are constants, equation (2) becomes a nonlinear equation

for e?l, 552, 522, be, a; and b;. Choosing an initial configuration of

r(4), the nonlinear equation is solved by an optimization algrithom
(Subroutine ZXMIN in IMSL Library) which minimizes the difference between
the right and left hand sides of (2). The initial and final configurations
of r = r(4) are compared to the actual shape of r(4) (Fig. 3). The actual

values of nonelastic strains are e?j = 1 while the computed ones are e?l -

0.97, 522'- 0.97 and e?z = 0.9, respectively.

Fig. 4. - A body with a point defect 8. x - x’ = x_ - X’
for x ¢ @ and x’' ¢ dD.
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Another interesting case is as follows. When domain Q is small and far
away from surface 3D, O can be treated as a point defect (Fig. 4). Note x -
X' = X, - X' for X' € D, x ¢ Q and a fixed point X, inside Q. Equation (1)

can be simplified as

- x' p
Ciyxs G, 2 Ko X ,[ €y (%) 9
Q

(o)

[ Cipns Camp & E) g 0 ngas + Tu @) (@)

abn

The location of the defect X, as well as the quantity I ezj (x) dx can be
Q

obtained by employing a proper algorithm for the nonlinear problem (4).

to a Linear Problem

As we have mentioned, in general, the nonlinear problem (1) to
determine Q and ez. cannot be solved uniquely. Even for certain specific

problems (e.g., equations (2) and (4)), where the uniqueness is guaranteed,
the construction of a proper algorithm is still a difficult task. On the
other hand, the degree of difficulty will be greatly reduced if the
nonlinear problem is converted into a linear ome.

Problem (1) becomes a linear problem when domain Q is specified. The
question is how to specify Q since we really do not know its shape and
location,

, *
Choose a domain @ (equivalent damage domain) such that  is contained

inside n*. Equation (1) is changed to

c G (x - x') €&, (x) d
'[0* 1jke Ckm, g (3 7 2D €5y (¥) dx

- - ! l '
,[ Cijke Ckm, g (X 7 X uy (B) mydx o+ 5 ou, (x7) )
ap

¢ 4D

1%
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which is a linear problem to determine e? . Now we discuss the relationship

between the solutions of nonlinear problem (1) and linear problem (5).

Conclusion 1. The stress field caused by both solutions are identical

: , *
in the region outside Q .
Conclusion 2. The minimum elastic energy (or any other quadratic
j) of all the egj satisfying (5) is a lower bound of that of
actual nonelastic strains satisfying (1).

The above conclusions are based on the fact that if surface
displacements and traction forces are zero on a part of the boundary of an
elastic body, the displacements and stresses are identically zero in the
whole elastic body. The details of the discussion can be found in Gao and
Mura (1989). The same idea applies to the problem of calculating the
shielding effects due to an unknown distribution of micro-defects in an

unknown domain ( by measuring the crack opening displacements (Gao and Mura,
1990; also see Fig. 35).

function of eg

Fig. 5. - An infinite medium with a crack. The shielding
effects of the mirco-defects can be calculated from
measurements of crack opening displacements.
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4 From the Linear Problem to a New Nonlinear Problem

By specifying domain @1 as O*, we have changed the nonlinear problem (1)
to a linear equation (5). The solution of the linear problem (5) perserves
important characteristics of the actual nonelastic strains. However,
equation (5) is still an {ll-posed problem (nonunique and unstable), which
cannot be solved direccly.

Let’s write equation (5) as
Ux') = I K(x,x')V(x)dx for x’ on 3D (6)
Q*
where U(x’') is known since ui(§) is given on dD. K(x,x') = Cijkﬁ ka,i

(x-x") and V(x) is an unknown vector whose components are P,

1]
Now consider a variational problem
Min | ¥ (o |2 7
subjectad to || J K (x,x) ¥V (x) dx - U (x") ||2 -
*

Q

where ¢ is a small number chosen from the accuracy of measurement and

v 1P-] 7wy e ®
*

YT is the transpose vector of V.

The use of a Lagrange multiplier )\ transforms (7) to
2
[

Min {|] v (x) + (| J K(x.x)V(0dx - Ux)||% - b (9)
*
Q

The Euler equation of (9) becomes

[ aprv@aray@-v @, foryeal (10)
*
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where

ey - [ gk (11)

U - | faaonaa
aDb

The integral equation (10) is solved for V(x) with parameter a. The value
of a is determined from

£(a) = || f K(x.x)U(xdx - Uz ||2 - ¢ = 0. (12)
*

Equation (10) is a well-posed Fredholm integral equation of the second
kind with a self-adjoint kermel. For any chosen parameter a, equation (10)
can be solved by employing conventional technigues such as Zinize 2lzments
method. However, the parameter a aust sacisfy the nonlinear alzebral:
equation (12). Therefore, the new problem is essentially a nonlinear
problem again, but a much easier one compared with the original nonlinear

problem (1).

The nonlinear function f£(a) is an increasing function of a and has only
one root (Gao and Mura, 1989). Therefore, the root can be solved by the
bisection algorithm. The algorithm converges rather fast since in each
iteration, the interval containing the root of f(a) is reduced by half.

0 03 ‘//ao X

Fig. 6. - Even though Q1 (where nonelastic strains are distributed)
is unknown, it is always possible to cover 1 with a chosen

domain 0*. The original nonlinear problem is, therfore,
changed into a linear problem.
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Let us counsider the example shownm in Fig. 6. Two dimensional half
space is given by x, = 0 and the nonelastic strains distribucted inside Q are

¥5; =2 €}, = 28 (x, - 0.6) (x, - 1.0)

€D, = - €D, =20 (x, - 1.7) cos 2x,. (13)
Table 1
*
Q [1v]] Y 